

Homework problems #1

To be handed in by email on Apr 1, 2024.

Problem 1.1 (Alper, Exc 0.3.27). —

(a) Let $0 \leq r \leq n$ be integers and let $F: \mathbf{Sch}^{\text{op}} \rightarrow \mathbf{Set}$ be the functor:

$$T \mapsto \{q: \mathcal{O}_T^n \rightarrow \mathcal{O}_T^r \text{ surjective } \mathcal{O}_T\text{-homomorphism}\} / \sim$$

where two quotients are considered to be equal if their kernels are equal, i.e., $q \sim \varphi \circ q$ for all $\varphi \in \text{GL}_r(\mathcal{O}_T)$. Is F represented by a scheme?

(b) Let \mathbb{G}_m act on $\mathbb{A}^n \setminus 0$ by $\lambda.(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$. Give an explicit simple description of the presheaf quotient $G: \mathbf{Sch}^{\text{op}} \rightarrow \mathbf{Set}$:

$$T \mapsto (\mathbb{A}^n \setminus 0)(T) / \mathbb{G}_m(T).$$

Is G a sheaf for the Zariski topology?

Problem 1.2. Let S be a noetherian scheme and let $f: X \rightarrow Y$ be a morphism of S -schemes. Let $F: \mathbf{Sch}^{\text{op}} \rightarrow \mathbf{Set}$ be the functor:

$$T \mapsto \{g: T \rightarrow S : f_T: X \times_S T \rightarrow Y \times_S T \text{ is an isomorphism}\}.$$

This is naturally a subfunctor of $h_S = \text{Mor}(-, S)$.

(a) Show that if $X \rightarrow S$ is flat and proper and $Y \rightarrow S$ is proper, then $F \rightarrow h_S$ is represented by an open immersion. *Hint: The fiberwise criterion of flatness could be useful, see Stacks project Tag 039A.*

(b) Find counter-examples to (a) when (i) $X \rightarrow S$ is not flat, (ii) $X \rightarrow S$ is not proper, or (iii) $Y \rightarrow S$ is not proper. *Hint: The counter-examples are very simple and $S = \mathbb{A}^1$ suffices.*

Problem 1.3. Let G be a group and let BG denote the groupoid which has one object with $\text{Aut}(\ast) = G$.

(a) Given two groups G, H , describe the groupoid $\text{Hom}(BG, BH)$. What is its connected components?

(b) Show that the following diagram

$$\begin{array}{ccc} G & \longrightarrow & \ast \\ \downarrow & & \downarrow \\ \ast & \longrightarrow & BG \end{array}$$

is naturally 2-cartesian (this involves specifying a 2-morphism).

(c) If H is a normal subgroup of G , show that

$$\begin{array}{ccc} BH & \longrightarrow & BG \\ \downarrow & & \downarrow \\ \ast & \longrightarrow & B(G/H) \end{array}$$

is 2-cartesian.