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DErINITION 2.1.2, Let ' be a category. A Grothendicck topology on €' consists
of a sel Cov{X) of collections of morphisms {X; — X},e7 lor every object X € (7
snuch that the following hold:

(i) If V' — X is an isomorphism then {V — X} € Cov(X).
(i) TF{X; = X}ier € CoviX) and ¥V = X is any arrow in ', then the fiber
products X; x x Y exist in " and the collection

{Xixx Y =Y}

is in Cov(Y).
(iii) If {X; » X}ies ¢ CoviX), and if for everv ¢ ¢ / we are given {V;;
Xi}ier € Cov(X;) then the collection of composites

Ve Xy K laies
is in Cov(X).
RexMark 2.1.3. We eall the collections {X; — X }iop in Cov(X') the coverings
of X.
Revark 2.1.4. The above notion of Grothendieck topology is called a pre-
topology” In 8/,
,\Jw

DerFINITION 2.1.5. A category with a Grothendieck topology is called a sile.
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