

Homework exercises for lecture #2

To be handed in on paper on Feb 11 (lecture #3) or earlier by email.

Throughout X denotes a complex manifold and $x \in X$ denotes a point.

- (1) Suppose that X is connected. Let f be a non-zero holomorphic function.
Show that $Z(f) = \{x \in X : f(x) = 0\}$ is nowhere dense¹.
- (2) Show that the ring $\mathcal{O}_{X,x}$ is an integral domain.
- (3) Let $K(X)$ denote the ring of meromorphic functions on X .
 - (a) Show that if X is connected, then $K(X)$ is a field.
 - (b) What happens if X is not connected?
 - (c) What is the relation between the fraction field of the integral domain $\mathcal{O}_{X,x}$ and $K(X)$?

If you need a hint, see next page.

¹A subset $A \subseteq X$ is *dense* if $\overline{A} = X$. A subset $A \subseteq X$ is *nowhere dense* if $A \cap U \subseteq U$ is not dense for any (non-empty) open $U \subseteq X$. Equivalently, \overline{A} has empty interior.

Hint for (2): This can be proven both analytically and algebraically. An analytic approach could be to use (1). An algebraic approach could use a suitable order on monomials.

Hint for (3a): It could be useful to use (1).