

Homework problems for lecture #3

To be handed in on paper on Feb 18 (lecture #4) or earlier by email.

Functions on a complex torus. Let $\Lambda = \omega_1\mathbb{Z} + \omega_2\mathbb{Z}$ be a lattice in \mathbb{C} , i.e., $\omega_1, \omega_2 \in \mathbb{C}$ are such that Λ spans $\mathbb{C} = \mathbb{R}^2$ as a real vector space. Recall that $X = \mathbb{C}/\Lambda$ is a complex torus. A holomorphic/meromorphic function on X is thus the same as a *doubly periodic* holomorphic/meromorphic function on \mathbb{C} , that is, a function such that $f(z + \omega) = f(z)$ for all $\omega \in \Lambda$.

Weierstrass function. The *Weierstrass function* is the function $\mathbb{C} \setminus \Lambda \rightarrow \mathbb{C}$ given by:

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right).$$

You do not have to prove the following facts.

- (i) The series above converges absolutely and uniformly on compact subsets. More precisely, for any $R > 0$, there is a finite subset $\Lambda_R \subset \Lambda$ such that

$$\wp_R(z) = \sum_{\omega \in \Lambda \setminus \Lambda_R} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)$$

is uniformly absolutely-convergent on $B_R(0)$.

- (ii) It follows that $\wp_R(z)$ is holomorphic on $B_R(0)$.

Homework problems.

- (1) (a) Show that $\wp(z)$ is an even meromorphic function and that $\wp'(z)$ is an odd meromorphic function.
 (b) Show that $\wp'(z)$ is doubly periodic.
 (c) Show that $\wp(z)$ is doubly periodic.
 (d) Show that $\wp(z)$ satisfies the differential equation

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

for some unique constants $g_2, g_3 \in \mathbb{C}$ (depending on Λ).

- (2) We let $\mathbb{P}^2 = \{(x_0 : x_1 : x_2)\}$. Consider the map $f: \mathbb{C} \rightarrow \mathbb{P}^2$ defined by:

$$f(z) = \begin{cases} (\wp(z) : \wp'(z) : 1) & \text{if } z \notin \Lambda \\ (0 : 1 : 0) & \text{if } z \in \Lambda \end{cases}$$

By (1b) and (1c), this induces a map $g: \mathbb{C}/\Lambda \rightarrow \mathbb{P}^2$.

- (a) Show that g is holomorphic.
 (b) Show that the image of g is contained in the analytic subspace $E = Z(p) \subset \mathbb{P}^2$ where p is the homogeneous polynomial

$$p(x_0, x_1, x_2) = x_1^2 x_2 - (4x_0^3 - g_2 x_0 x_2^2 - g_3 x_2^3)$$

It can also be shown that g is injective with image E but you don't need to prove that.

If you need a hint, see next page.

Hint for (1c): Prove this using (1a) and (1b). It is not immediate from the series expression of $\wp(z)$.

Hint for (1d): Choose the constant g_2 such that $g_3(z) := 4\wp(z)^3 - \wp'(z)^2 - g_2\wp(z)$ becomes holomorphic in a neighborhood of 0 and then show that $g_3(z)$ is constant.

Hint for (2a): It is enough to show that f is holomorphic over the two standard opens $U_2 = \{x_2 \neq 0\}$ and $U_1 = \{x_1 \neq 0\}$.