
LOCAL STRUCTURE OF ALGEBRAIC STACKS: EXERCISES

LECTURE 2: THE LOCAL STRUCTURE OF ALGEBRAIC STACKS

Exercise 2.1 (Local structure of DM-stacks). Let k be an algebraically closed field
and X a Deligne–Mumford stack of finite type over k with coarse space X → X. Let
x ∈X (k). Prove the local quotient structure: “there exists an étale stabilizer-preserving
morphism ([W/Gx], u)→ (X , x)” as follows:

(a) Reduce to X henselian local.
(b) Prove that there is a finite étale presentation p : U →X with U affine.
(c) If p has degree d, show that X = [V/Σd] for suitable affine V .
(d) Pick a point v ∈ V above x ∈ |X |. Show that Gx acts on a clopen subscheme

W ⊆ V such that X = [W/Gx].
(e) When k is not algebraically closed, show that steps (a)–(c) make sense and gives

([V/G], v)→ (X , x) étale, stabilizer-preserving and such that κ(v) = κ(x).

Definition 2.2. Let X be a (qcqs) stack and X0 a closed substack. We say that

• (X ,X0) is local if every closed non-empty subset of |X | meets |X0|.
• (X ,X0) is henselian if for every finite morphism X ′ →X

ClOpen(X ′)→ ClOpen(X ′ ×X X0)

is bijective.
• (X ,X0) is (coherently) complete if X is noetherian and

Coh(X )→ lim←−
n

Coh(Xn)

is an equivalence of categories (Xn is the nth infinitesimal neighborhood of X0).

Exercise 2.3 (Nakayama’s lemma for stacks). Suppose that (X ,X0) is a local stack.

(a) Show that if F ∈ QCoh(X ) is of finite type and F|X0 = 0, then F = 0.
(b) Show that if ϕ : F → G is a homomorphism of quasi-coherent OX -modules such

that G is of finite type and ϕ|X0 is surjective, then ϕ is surjective.

Exercise 2.4 (Complete and henselian pairs I). Let X0 ↪→X be a closed immersion.

(a) Show that (X ,X0) coherently complete =⇒ (X ,X0) henselian =⇒ (X ,X0)
local.

Let p : X → X be a universally closed surjective morphism (e.g., a good moduli space)
and let X0 = p(X0).

(b) Show that: (X ,X0) local =⇒ (X,X0) local.
(c) Show that: (X ,X0) henselian =⇒ (X,X0) henselian, if p has geometrically

connected fibers.

Exercise 2.5 (Complete and henselian pairs II). Let X0 ↪→X be a closed immersion.
Let p : X ′ → X be a morphism and X ′

0 = p−1(X0). Give (elementary) proofs of the
following facts:
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(1) If (X ,X0) is noetherian and henselian and p is proper and representable, then
(X ′,X ′

0 ) is henselian. Hint: use Stein factorizations (these also exists for proper
algebraic spaces). In fact, the result is also true without noetherian assumptions.

(2) If (X ,X0) is complete and p is finite, then (X ′,X ′
0 ) is complete.
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