LOCAL STRUCTURE OF ALGEBRAIC STACKS: EXERCISES
LECTURE 2: THE LOCAL STRUCTURE OF ALGEBRAIC STACKS

Exercise 2.1 (Local structure of DM-stacks). Let k& be an algebraically closed field
and Z a Deligne-Mumford stack of finite type over k with coarse space 2 — X. Let
x € Z (k). Prove the local quotient structure: “there exists an étale stabilizer-preserving
morphism ([W/Gz],u) — (£, x)” as follows:

(a) Reduce to X henselian local.

(b) Prove that there is a finite étale presentation p: U — 2~ with U affine.

(c) If p has degree d, show that 2~ = [V/%,] for suitable affine V.

(d) Pick a point v € V above z € |27|. Show that G, acts on a clopen subscheme
W C V such that 2" = [W/Gy].

(e) When £k is not algebraically closed, show that steps (a)—(c) make sense and gives
([V/G],v) = (Z, x) étale, stabilizer-preserving and such that x(v) = k(x).

Definition 2.2. Let 2 be a (qcgs) stack and 2p a closed substack. We say that
o (27, 20) is local if every closed non-empty subset of | 2| meets |Z|.
o (2, 20) is henselian if for every finite morphism 27/ — 2~
ClOpen(Z2™) — ClOpen(2” x o= 20)
is bijective.
o (2, 20) is (coherently) complete if 2" is noetherian and
Coh(Z) — @Coh(%n)

is an equivalence of categories (£, is the nth infinitesimal neighborhood of Zy).

Exercise 2.3 (Nakayama’s lemma for stacks). Suppose that (27, 2p) is a local stack.

(a) Show that if 7 € QCoh(Z") is of finite type and F|2; = 0, then F = 0.
(b) Show that if ¢: F — G is a homomorphism of quasi-coherent Ox-modules such
that G is of finite type and (| ; is surjective, then ¢ is surjective.

Exercise 2.4 (Complete and henselian pairs I). Let Zp < 2 be a closed immersion.
(a) Show that (27, Zp) coherently complete — (£, Zp) henselian — (27, 20)
local.
Let p: 2" — X be a universally closed surjective morphism (e.g., a good moduli space)
and let Xo = p(2p).

(b) Show that: (2, Z0) local = (X, Xy) local.
(c) Show that: (%2, Zp) henselian == (X, X() henselian, if p has geometrically
connected fibers.

Exercise 2.5 (Complete and henselian pairs II). Let 2y — 2 be a closed immersion.
Let p: 27 — 2 be a morphism and 2y = p~1(2p). Give (elementary) proofs of the
following facts:

Date: 2019-09-15.



EXERCISES LECTURE 2

(1) If (27, Zo) is noetherian and henselian and p is proper and representable, then
(27, 2Z7) is henselian. Hint: use Stein factorizations (these also exists for proper
algebraic spaces). In fact, the result is also true without noetherian assumptions.

(2) If (27, Zo) is complete and p is finite, then (27, Z{) is complete.
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