

LOCAL STRUCTURE OF ALGEBRAIC STACKS: EXERCISES

LECTURE 2: THE LOCAL STRUCTURE OF ALGEBRAIC STACKS

Exercise 2.1 (Local structure of DM-stacks). Let k be an algebraically closed field and \mathcal{X} a Deligne–Mumford stack of finite type over k with coarse space $\mathcal{X} \rightarrow X$. Let $x \in \mathcal{X}(k)$. Prove the local quotient structure: “there exists an étale stabilizer-preserving morphism $([W/G_x], u) \rightarrow (\mathcal{X}, x)$ ” as follows:

- (a) Reduce to X henselian local.
- (b) Prove that there is a *finite* étale presentation $p: U \rightarrow \mathcal{X}$ with U affine.
- (c) If p has degree d , show that $\mathcal{X} = [V/\Sigma_d]$ for suitable affine V .
- (d) Pick a point $v \in V$ above $x \in |\mathcal{X}|$. Show that G_x acts on a clopen subscheme $W \subseteq V$ such that $\mathcal{X} = [W/G_x]$.
- (e) When k is not algebraically closed, show that steps (a)–(c) make sense and gives $([V/G], v) \rightarrow (\mathcal{X}, x)$ étale, stabilizer-preserving and such that $\kappa(v) = \kappa(x)$.

Definition 2.2. Let \mathcal{X} be a (qcqs) stack and \mathcal{X}_0 a closed substack. We say that

- $(\mathcal{X}, \mathcal{X}_0)$ is *local* if every closed non-empty subset of $|\mathcal{X}|$ meets $|\mathcal{X}_0|$.
- $(\mathcal{X}, \mathcal{X}_0)$ is *henselian* if for every finite morphism $\mathcal{X}' \rightarrow \mathcal{X}$

$$\text{ClOpen}(\mathcal{X}') \rightarrow \text{ClOpen}(\mathcal{X}' \times_{\mathcal{X}} \mathcal{X}_0)$$

is bijective.

- $(\mathcal{X}, \mathcal{X}_0)$ is (coherently) *complete* if \mathcal{X} is noetherian and

$$\text{Coh}(\mathcal{X}) \rightarrow \varprojlim_n \text{Coh}(\mathcal{X}_n)$$

is an equivalence of categories (\mathcal{X}_n is the n th infinitesimal neighborhood of \mathcal{X}_0).

Exercise 2.3 (Nakayama’s lemma for stacks). Suppose that $(\mathcal{X}, \mathcal{X}_0)$ is a local stack.

- (a) Show that if $\mathcal{F} \in \text{QCoh}(\mathcal{X})$ is of finite type and $\mathcal{F}|_{\mathcal{X}_0} = 0$, then $\mathcal{F} = 0$.
- (b) Show that if $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ is a homomorphism of quasi-coherent \mathcal{O}_X -modules such that \mathcal{G} is of finite type and $\varphi|_{\mathcal{X}_0}$ is surjective, then φ is surjective.

Exercise 2.4 (Complete and henselian pairs I). Let $\mathcal{X}_0 \hookrightarrow \mathcal{X}$ be a closed immersion.

- (a) Show that $(\mathcal{X}, \mathcal{X}_0)$ coherently complete $\implies (\mathcal{X}, \mathcal{X}_0)$ henselian $\implies (\mathcal{X}, \mathcal{X}_0)$ local.

Let $p: \mathcal{X} \rightarrow X$ be a universally closed surjective morphism (e.g., a good moduli space) and let $X_0 = p(\mathcal{X}_0)$.

- (b) Show that: $(\mathcal{X}, \mathcal{X}_0)$ local $\implies (X, X_0)$ local.
- (c) Show that: $(\mathcal{X}, \mathcal{X}_0)$ henselian $\implies (X, X_0)$ henselian, if p has geometrically connected fibers.

Exercise 2.5 (Complete and henselian pairs II). Let $\mathcal{X}_0 \hookrightarrow \mathcal{X}$ be a closed immersion. Let $p: \mathcal{X}' \rightarrow \mathcal{X}$ be a morphism and $\mathcal{X}'_0 = p^{-1}(\mathcal{X}_0)$. Give (elementary) proofs of the following facts:

Date: 2019-09-15.

- (1) If $(\mathcal{X}, \mathcal{X}_0)$ is noetherian and henselian and p is proper and representable, then $(\mathcal{X}', \mathcal{X}'_0)$ is henselian. *Hint: use Stein factorizations (these also exists for proper algebraic spaces). In fact, the result is also true without noetherian assumptions.*
- (2) If $(\mathcal{X}, \mathcal{X}_0)$ is complete and p is finite, then $(\mathcal{X}', \mathcal{X}'_0)$ is complete.

REFERENCES

- [AHLH18] Jarod Alper, Daniel Halpern-Leistner, and Jochen Heinloth, *Existence of moduli spaces for algebraic stacks*, Preprint, Dec 2018, arXiv:1812.01128.
- [AHR1] Jarod Alper, Jack Hall, and David Rydh, *A Luna étale slice theorem for algebraic stacks*, Preprint, latest version available on <https://people.kth.se/~dary/papers.html>, Apr 2015.
- [AHR2] Jarod Alper, Jack Hall, and David Rydh, *The étale local structure of algebraic stacks*, Preprint available on <https://people.kth.se/~dary/papers.html>, 2019.
- [AHHLR3] Jarod Alper, Jack Hall, Daniel Halpern-Leistner, and David Rydh, *Artin algebraization for pairs and applications to the local structure of stacks and Ferrand pushouts*, Draft, 2019.
- [Alp13] Jarod Alper, *Good moduli spaces for Artin stacks*, Ann. Inst. Fourier (Grenoble) **63** (2013), no. 6, 2349–2402.
- [Alp14] Jarod Alper, *Adequate moduli spaces and geometrically reductive group schemes*, Algebr. Geom. **1** (2014), no. 4, 489–531.
- [Alp15] Jarod Alper, *Artin algebraization and quotient stacks*, Oct 2015, arXiv:1510.07804.
- [Art69a] M. Artin, *Algebraic approximation of structures over complete local rings*, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 23–58.
- [Art69b] M. Artin, *Algebraization of formal moduli. I*, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71.
- [ER18] Dan Edidin and David Rydh, *Canonical reduction of stabilizers for Artin stacks with good moduli spaces*, Preprint, Oct 2018, arXiv:1710.03220v2, p. 36.
- [HR19] Jack Hall and David Rydh, *Coherent Tannaka duality and algebraicity of Hom-stacks*, Algebra Number Theory **13** (2019), no. 7, 1633–1675.
- [KM97] Seán Keel and Shigefumi Mori, *Quotients by groupoids*, Ann. of Math. (2) **145** (1997), no. 1, 193–213.
- [Ols06] Martin C. Olsson, *Deformation theory of representable morphisms of algebraic stacks*, Math. Z. **253** (2006), no. 1, 25–62.
- [Pop86] Dorin Popescu, *General Néron desingularization and approximation*, Nagoya Math. J. **104** (1986), 85–115.
- [Ryd13] David Rydh, *Existence and properties of geometric quotients*, J. Algebraic Geom. **22** (2013), no. 4, 629–669.

DEPARTMENT OF MATHEMATICS, KTH, 100 44 STOCKHOLM, SWEDEN
E-mail address: dary@math.kth.se