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Abstract. We consider various notions of Mayer–Vietoris squares in algebraic

geometry. We use these to generalize a number of gluing and pushout results of
Moret-Bailly, Ferrand–Raynaud, Joyet and Bhatt. An important intermediate

step is Gabber’s rigidity theorem for henselian pairs, which our methods give

a new proof of.

1. Introduction

Let X be a topological space and let U , V ⊆ X be open subsets such that
X = U∪V . Frequently, natural invariants of X can be determined by the restriction
of these invariants to U , V and U ∩ V . The prototypical examples are the Mayer–
Vietoris exact sequences in algebraic topology. These results have proved to be
very useful for inductive arguments.

Now let X be a variety, scheme, algebraic space, or algebraic stack. It is straight-
forward to adapt the topological results (e.g., Mayer–Vietoris with open coverings)
to this situation. In algebraic geometry, however, open coverings are often too re-
strictive to use in inductive arguments. A consideration of the existing literature
motivated us to make the following definition.

Definition 1.1. Consider a cartesian diagram of algebraic stacks

(1.1)

U ′
j′ //

fU

��

X ′

f

��
U

j // X,

�

where j is an open immersion. It is a weak Mayer–Vietoris square if for every
morphism of algebraic stacks W → X with image disjoint from U , the induced
morphism fW : W ′ = X ′×XW →W is an isomorphism. It will be convenient to let
i : Z ↪→ X denote a closed immersion with complement U . Then Z ′ := f−1(Z)→ Z
is an isomorphism.

The condition of being a weak Mayer–Vietoris square is trying to capture that
X ′ contains all infinitesimal neighborhoods of Z in X. In particular, if X and X ′

are locally noetherian, then being a weak Mayer–Vietoris square is equivalent to
fZ being an isomorphism and f being flat at all points over Z (Lemma 3.3).

Fix a weak Mayer–Vietoris square as in (1.1). If f is étale, then it is also known
as an étale neighborhood, or upper distinguished square, or Nisnevich square. These

Date: Apr 3, 2023.
1991 Mathematics Subject Classification. Primary 14A20; secondary 13F40, 13J10, 14F08,

14F20.
Key words and phrases. Mayer-Vietoris squares, descent, derived categories, algebraic stacks,

étale morphisms.
The first author was supported by the Australian Research Council DE150101799 while some

of this work was completed.
The second author was supported by the Swedish Research Council 2011-5599 and 2015-05554.

1



2 J. HALL AND D. RYDH

were treated in depth in [Ryd11]. Some highlights of the theory are that étale neigh-
borhoods are pushouts in the 2-category of algebraic stacks and that quasi-coherent
sheaves (and many more things) can be glued along étale neighborhoods. Étale
neighborhoods feature prominently in the interactions between algebraic geometry
and topology.

There is another class of weak Mayer–Vietoris squares, which generalize étale
neighborhoods, that have been considered and applied to great effect in the past
[FR70, Joy96]. These are our main object of interest.

Definition 1.2. A flat Mayer–Vietoris square is a weak Mayer–Vietoris square as
in (1.1) such that f is flat.

Our first main result is the following.

Theorem A. Fix a flat Mayer–Vietoris square as in (1.1). If X is locally the
spectrum of a G-ring (e.g., locally excellent), then the square (1.1) is a pushout in
the 2-category of algebraic stacks.

For a discussion of G-rings, see [Stacks, Tag 07GG]. An algebraic stack is locally
excellent if it admits a smooth cover by an excellent scheme; in particular, algebraic
stacks that are locally of finite type over the spectrum of a field, Z, or a complete
local noetherian ring are locally excellent. Theorem A is the key technical result
used to establish Tannaka duality for algebraic stacks with non-separated diagonals
[HR19]—if the diagonals are separated, then [MB96, Cor. 6.5.1(g)] is sufficient for
the Tannakian application.

In general, Mayer–Vietoris squares are interesting since objects can be glued
along them. To formalize this, consider a 2-presheaf F : (Stacks/X)◦ → Cat [Ryd11,
App. D], e.g., the 2-presheaf F(−) = QCoh(−) of quasi-coherent sheaves of modules.
By pull-back, we obtain a functor

ΦF : F(X)→ F(X ′)×F(U ′) F(U)

where the right-hand side denotes triples (W ′, θ,WU ) where W ′ ∈ F(X ′), WU ∈
F(U) and θ : j′∗W ′ → f∗UWU is an isomorphism. When the functor ΦF is an equiv-
alence, we say that we can glue F along the square.

We do not have any general gluing results for 2-sheaves as for étale neighbor-
hoods [Ryd11, Thm. A]—nor do we expect such—but we will give gluing results
for the following 2-presheaves, where the values over an algebraic stack Y are as
follows:

QCoh(Y ) the category of quasi-coherent sheaves of OY -modules.
Aff(Y ) the category of affine morphisms Y ′ → Y .

Qaff(Y ) the category of quasi-affine morphisms Y ′ → Y .
AlgSp(Y ) the category of representable morphisms Y ′ → Y .

AlgSplfp(Y ) the category of representable morphisms Y ′ → Y , locally of finite
presentation.

Hom(Y,W ) the groupoid of morphisms Y →W to a fixed algebraic stack W .
Et(Y ) the category of étale representable morphisms Y ′ → Y , or equivalently,

the category of cartesian sheaves of sets on the lisse-étale site of Y .
Etc(Y ) the category of finitely presented étale representable morphisms Y ′ →

Y , or equivalently, the category of constructible sheaves of sets.

We prove the following gluing results.

Theorem B. Fix a flat Mayer–Vietoris square as in (1.1). If j is quasi-compact,
then

(1) ΦQCoh, ΦAff and ΦQaff are equivalences of categories;
(2) ΦAlgSp is fully faithful;

http://stacks.math.columbia.edu/tag/07GG
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(3) ΦHom(−,W ) is fully faithful for every algebraic stack W and an equivalence
if W has quasi-affine diagonal; and

(4) ΦAlgSplfp
is an equivalence of categories if X is locally the spectrum of a

G-ring.

Theorem C. Fix a weak Mayer–Vietoris square as in (1.1). If j is quasi-compact,
then ΦEt and ΦEtc are equivalences of categories.

Theorem A essentially follows from Theorem B(4). Theorem B(2)–(4) relies
upon Theorem C and general Néron–Popescu desingularization [Pop85]. Gabber’s
rigidity theorem (Theorem 6.4) features in the proof of Theorem C. Both results
also depend upon some further gluing results for quasi-coherent sheaves.

To prove Theorem B, we approximately follow the approach of [MB96]. The main
idea is pass to a square as in (1.1) where f : X ′ → X is replaced by its diagonal
∆f : X ′ → X ′ ×X X ′ and j : U → X is replaced by j′ × j′ : U ′ ×X U ′ → X ′ ×X X ′.
In particular, unless f is unramified the resulting square will not be a flat Mayer–
Vietoris square. Moreover, even if X is a locally noetherian algebraic stack, then
unless f is locally of finite type, X ′ ×X X ′ has no reason to be locally noetherian.
For example, in applications one often takes X = SpecA and X ′ = Spec Â, where
Â denotes the I-adic completion with respect to some ideal I of A; in this situation,
X ′ ×X X ′ is only noetherian when X ′ = X.

To manage such squares, we have the following natural variant of what Moret-
Bailly considered.

Definition 1.3. A tor-independent Mayer–Vietoris square is a weak Mayer–Vietoris
square as in (1.1) such that every morphism of algebraic stacks W → X with image
disjoint from U is tor-independent of f (Definition 2.1).

In other words, the derived base change X ′
R
×X W → W is an isomorphism for

every W → X with image disjoint from U .
If f is affine and U is the complement of a finitely presented closed immer-

sion i : Z ↪→ X, then a tor-independent Mayer–Vietoris square is the same as a
triple (X,Z,X ′) satisfying the (TI) condition in the terminology of [MB96, 0.2,
0.6] (Lemma 3.2(2)). If X ′ and X are locally noetherian, then tor-independent
Mayer–Vietoris squares are very similar to flat Mayer–Vietoris squares (Lemma
3.3). We now state our gluing result for tor-independent Mayer–Vietoris squares,
which we can prove for f -flat objects (see Definition 2.1).

Theorem D. Fix a tor-independent Mayer–Vietoris square as in (1.1). If j is
quasi-compact, then

(1) ΦQCohf−fl
is an equivalence and

(2) ΦAlgSpf−fl
is fully faithful.

For tor-independent Mayer–Vietoris squares, we prove the following non-noetherian
variant of Theorem A.

Theorem E. Fix a tor-independent Mayer–Vietoris square as in (1.1). If j is
quasi-compact, then it is a pushout in the 2-category of Deligne–Mumford stacks.

Since we make no separation assumptions on our algebraic stacks, Theorem E
generalizes recent work of Bhatt [Bha16]. Note, however, that while Bhatt uses
(derived) Tannaka duality to prove a version of Theorem E for quasi-compact and
quasi-separated algebraic spaces, we work in the opposite direction (i.e., we use
pushouts to prove Tannaka duality in [HR19]).

Remark 1.4. While it may appear that our results are weaker than the correspond-
ing étale gluing results [Ryd11] because we require j to be quasi-compact, this turns
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out to not be the case. Indeed, smooth-locally on X there is an étale neighborhood
X ′′ of Z ′ in X ′ such that X ′′ → X is quasi-affine (Proposition 3.7). If f : X ′ → X
is an étale neighborhood, then X ′′ → X is of finite presentation so we can find an
open U0 ⊆ U such that U0 → X is quasi-compact and the resulting square with
X ′′ → X is an étale neighborhood of X r U0.

Overview. In Section 2 we give some preliminaries on tor-independence. In Sec-
tion 3 we compare the different notions of Mayer–Vietoris squares and give several
examples. In Section 4 we glue quasi-coherent sheaves in tor-independent Mayer–
Vietoris squares (Theorem D(1) and Theorem B(1)).

In Section 5 we prove some fundamental theorems for étale sheaves of sets on
algebraic stacks. In particular, we prove that every sheaf on a quasi-compact and
quasi-separated algebraic stack is a filtered colimit of constructible sheaves. We
also discuss henselian pairs of stacks.

In Section 6 we prove Gabber’s rigidity theorem and glue étale sheaves in weak
Mayer–Vietoris squares (Theorem C). In the noetherian case, Gabber’s rigidity
theorem follows immediately from Ferrand–Raynaud [FR70, App.]. In the non-
noetherian case, which is essential for the applications in this paper, the previous
proof [ILO14, Exp. 20] was much more involved. Using our results on gluing of
sheaves, we provide a self-contained proof (for H0 but the methods can be extended
to H1).

In Section 7 we glue algebraic spaces and prove that Mayer–Vietoris squares are
pushouts (Theorems A, B, D(2), and E).

Acknowledgements. We would like to thank an anonymous referee for a number
of helpful comments and suggestions.

2. Preliminaries

Here we record some preliminary results that will be of use in subsequent sections.
Most of these are globalizations of the affine results proved in [MB96, §2]. We begin
with the following definition.

Definition 2.1. Let f : X ′ → X and g : W → X be morphisms of algebraic stacks.
Let N ∈ QCoh(X ′) and M ∈ QCoh(W ).

(1) We say that M and N are tor-independent if TorX,f,gi (N,M) = 0 for all
i > 0 [Hal17, App. C]. Equivalently, for all smooth morphisms SpecA→ X,
SpecA′ → SpecA×X X ′ and SpecB → SpecA×X W we have

TorAi (N(SpecA′ → X ′),M(SpecB →W )) = 0

for all i > 0.
(2) We say thatM is f -flat if it is tor-independent of OX′ . We let QCohf−fl(W ) ⊆

QCoh(W ) denote the subcategory of f -flat quasi-coherent sheaves on W .
(3) We say that g is f -flat if OW is f -flat. Note that g is f -flat if and only if f

is g-flat. In particular, we may also say that f and g are tor-independent.

The following lemma is immediate from the definitions (we employ the notational
conventions from [HR17]).

Lemma 2.2. Let f : X ′ → X be a morphism of algebraic stacks and let M ∈
QCoh(X). Then M is f -flat if and only if the natural map Lf∗qcM → f∗M is a
quasi-isomorphism in Dqc(X ′).

The following notation will also be useful.
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Notation 2.3. Let i : Z ↪→ X be a closed immersion of algebraic stacks, which is
defined by the quasi-coherent ideal I. For each integer n ≥ 0, let i[n] : Z [n] ↪→ X
be the closed immersion defined by the quasi-coherent ideal In+1. Note that if i is
a finitely presented closed immersion, then so too is i[n] for all n ≥ 0.

The following lemma will eventually be improved (see Corollary 4.8), but is for
the meantime sufficient for our purposes.

Lemma 2.4. Consider a cartesian diagram of algebraic stacks:

V ′
v′ //

gV

��

W ′

g

��
V

v // W.

Assume that v is g-flat and a closed immersion.

(1) If M ∈ QCohgv−fl(V ), then v∗M ∈ QCohg−fl(W ).

(2) If gV is an isomorphism, then V [n] is g-flat and gV [n] : W ′×W V [n] → V [n]

is an isomorphism for every n ≥ 0.

Proof. Both claims are smooth local on W , so we may assume that W = SpecA
is an affine scheme. Claim (1) follows from tor-independent base change [HR17,
Cor. 4.13]. Indeed, this provides quasi-isomorphisms:

Lg∗qc(v∗M) ' Lg∗qcRv∗M ' Rv′∗L(gV )∗qcM ' v′∗g∗VM ' g∗v∗M.

Claim (2) is essentially the local criterion for flatness [EGA, 0III.10], but we will
spell out the details. Assume that V = Spec(A/I). Fix an integer n ≥ 1. By
induction we may also assume that gV [n−1] : W ′ ×W Spec(A/In) → Spec(A/In) is
an isomorphism and A/In is g-flat. Now (1) applied to V [n−1] → W implies that
every A/In-module is g-flat. In particular, In/In+1 is g-flat so the distinguished
triangle

Lg∗qc(In/In+1)→ Lg∗qc(A/In+1)→ Lg∗qc(A/In)→ Lg∗qc(In/In+1)[1]

now implies that A/In+1 is g-flat. Since V ′ ∼= V is affine, so is V ′[n]. The 0th
cohomology of the distinguished triangle above fits in the exact sequences

0 // In/In+1 //

∼=
��

A/In+1 //

��

A/In //

∼=
��

0

0 // Γ(V ′, g∗In/In+1) // Γ(V ′[n],OV ′[n]) // Γ(V ′[n−1],OV ′[n−1]) // 0

so gV [n] is an isomorphism. �

Let X be an algebraic stack and let i : Z ↪→ X be a closed immersion with
complement j : U → X. Define

QCohZ(X) = {M ∈ QCoh(X) : j∗M ∼= 0}.

Note that QCohZ(X) only depends on the closed subset |Z| ⊆ |X|.

Lemma 2.5. Let X be a quasi-compact algebraic stack. Let i : Z ↪→ X be a finitely
presented closed immersion.

(1) Let M ∈ QCohZ(X). If M is of finite type, then there exists an n� 0 such

that the natural map M → i
[n]
∗ (i[n])∗M is an isomorphism.

(2) If W ⊆ X is a closed substack with |W | ⊆ |Z|, then W ⊆ Z [n] for
some n� 0.
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Proof. For (1): we may assume that X = SpecA is an affine scheme and Z =
Spec(A/I), where I = (f1, . . . , fr) is a finitely generated ideal of A. By assumption,
Mfi = 0 for each i = 1, . . . , r. As M is finitely generated, it follows that there
exists n� 0 such that fni M = 0 for all i = 1, . . . , r. The claim follows.

For (2): let W0 = Z×XW . Then W0 ↪→W is a surjective and finitely presented

closed immersion. From (1), it follows that W ⊆ W
[n]
0 for some n � 0. But

W
[n]
0 ⊆ Z [n] and we have the claim. �

3. Mayer–Vietoris squares

In this section, we compare various notions of Mayer–Vietoris squares.

Lemma 3.1. Fix a cartesian diagram as in (1.1).

(1) If the square is a weak (resp. flat) Mayer–Vietoris square, then it remains
so after arbitrary base change on X.

(2) If the square is a tor-independent Mayer–Vietoris square, then it remains
so after f -flat base change on X.

(3) The properties of being a flat, tor-independent, or weak Mayer–Vietoris
square are flat local on X.

Proof. Claim (1) is trivial. For (2): let v : V → X be f -flat and let w : W → V be
such that the image of w is disjoint from v−1(U). Then v ◦ w has image disjoint
from U so is f -flat. It follows that w is fV -flat where fV : X ′ ×X V → V . Indeed,
this is local on W , V , X and X ′, so we may assume that X = SpecA, X ′ = SpecA′,
V = SpecB and W = SpecC and then

C ⊗L
B (B ⊗A A′) ' C ⊗L

A A
′ ' C ⊗A A′ ' C ⊗B (B ⊗A A′)

since v and v ◦ w are f -flat. The claim (3) is immediate from flat descent. �

As the following Lemma shows, the conditions for Mayer–Vietoris squares are
much easier to check when a description of the complement is given.

Lemma 3.2. Fix a cartesian diagram as in (1.1). Suppose that U is the comple-
ment of a finitely presented closed immersion i : Z ↪→ X.

(1) If fZ[n] : X ′ ×X Z [n] → Z [n] is an isomorphism for all n, then the square is
a weak Mayer–Vietoris square.

(2) If fZ : X ′ ×X Z → Z is an isomorphism and i and f are tor-independent,
then the square is a tor-independent Mayer–Vietoris square.

Proof. We may assume that X is affine (Lemma 3.1(3)). Let g : W → X be a
morphism of algebraic stacks with image disjoint from U . We must prove that
fW : X ′ ×X W → W is an isomorphism and for (2) also that f and g are tor-
independent. These claims are smooth local on W , so we may also assume that
W is affine. The morphism g is now affine, so its schematic image V exists and is
disjoint from U . In particular, |V | ⊆ |Z|. By Lemma 2.5(2), V ⊆ Z [n] for some
n� 0. Hence, W → X factors through Z [n] for some n� 0. The claim (1) is now
immediate. For (2), the result follows from Lemma 2.4(2). �

Note that if X is quasi-compact and quasi-separated and j is quasi-compact,
then i : Z ↪→ X as in Lemma 3.2 always exists [Ryd16, Prop. 8.2].

The following lemma connects the various types of Mayer–Vietoris squares to
each other.

Lemma 3.3. Fix a square as in (1.1). Consider the following conditions.

(1) The square is a flat Mayer–Vietoris square.
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(2) The square is a weak Mayer–Vietoris square and f is flat at every point of
Z ′.

(3) The square is a tor-independent Mayer–Vietoris square.
(4) The square is a weak Mayer–Vietoris square.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4). If X and X ′ are locally noetherian, then (4) =⇒
(2). If there exists a Cartier divisor i : Z ↪→ X with complement U such that
f−1(Z) → Z is an isomorphism and f−1(Z) ↪→ X ′ is also a Cartier divisor,
then (3) holds.

Proof. That (1) =⇒ (2) =⇒ (3) =⇒ (4) is obvious. If X and X ′ are locally
noetherian, then (2) follows from the local criterion of flatness [EGA, 0III.10.2.1–2]
(the conditions are flat-local on X and X ′ so reduces to schemes).

For the last claim, it is sufficient to prove that OZ is f -flat (Lemma 3.2(2)), which
is local on X. So we may assume that Z = V (s) and obtain an exact sequence

0→ OX
s·−→ OX → OZ → 0.

Applying Lf∗qc to this, we obtain a distinguished triangle in Dqc(X ′):

OX′ → OX′ → Lf∗qcOZ → OX′ [1].

The resulting long exact sequence of cohomology yields:

0→ H−1(Lf∗qcOZ)→ OX′
s·−→ OX′ → f∗OZ → 0,

with all other terms 0. Since f−1(Z) ↪→ X ′ is a Cartier divisor, s is regular on OX′

and so H−1(Lf∗qcOZ) = 0. Hence, Lf∗qcOZ → f∗OZ is a quasi-isomorphism and the
square is a tor-independent Mayer–Vietoris square. �

As the following lemma shows, blowing up provides a natural way to move from
the weak Mayer–Vietoris setting to the tor-independent setting.

Lemma 3.4. Fix a weak Mayer–Vietoris square as in (1.1). If there is a finitely
presented closed immersion i : Z ↪→ X with complement U , then

U ′
j′ //

fU

��

BlZ′X
′

f̃

��
U

j // BlZX

�

is a tor-independent Mayer–Vietoris square.

Proof. Since the exceptional divisors E ↪→ BlZX and E′ ↪→ BlZ′X
′ are Cartier

divisors it is enough to verify that E′ → E is an isomorphism (Lemma 3.3). Let I
be the ideal defining Z ↪→ X and I ′ the ideal defining Z ′ ↪→ X ′. Then the inverse
images of Z in the two blow-ups are

E = ProjX(⊕k≥0I
k/Ik+1) and E′ = ProjX′(⊕k≥0I

′k/I ′k+1).

Since I ′ = IOX′ and OX/I
m → OX′/I

′m is an isomorphism for every m, these two
graded rings are isomorphic OX/I = OX′/I

′-algebras. The result follows. �

The following lemma is a key observation of Moret-Bailly and will be essential
to the article.

Lemma 3.5 ([MB96, Cor. 2.5.1]). Fix a weak Mayer–Vietoris square as in (1.1).
If f admits a section s : X → X ′, then

U
j //

sU
��

X

s

��
U ′

j′ // X ′

�
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is a weak Mayer–Vietoris square. Moreover, if the square (1.1) is a tor-independent
Mayer–Vietoris square, then so too is the one above.

Proof. Let w′ : W ′ → X ′ be a morphism with image disjoint from U ′. It follows that

the composition W ′
w′−→ X ′

f−→ X has image disjoint from U and so W ′×XX ′ →W ′

is an isomorphism. In particular, the following diagram is cartesian:

X

s

��

W ′
f◦w′oo

X ′

f

��

W ′
w′oo

X W ′
f◦w′oo

and so W ′ ×X′ X → W ′ is an isomorphism as required. If the square (1.1) is a
tor-independent Mayer–Vietoris square, then the lower square in the diagram above
is tor-independent. Since the whole square is tor-independent, it follows that the
upper square is tor-independent and the last claim follows. �

Example 3.6 ([MB96, Prop. 2.5.2]). Fix a weak Mayer–Vietoris square as in (1.1).
Then

U ′
j′ //

∆fU

��

X ′

∆f

��
U ′ ×U U ′

j′×j′ // X ′ ×X X ′

�

is a weak Mayer–Vietoris square. Indeed, we can base change the square (1.1) by
X ′ → X and the resulting square is still weak (Lemma 3.1). Taking the diagonal
section to the projection X ′ ×X X ′ → X ′ and using Lemma 3.5 gives the claim. If
the square (1.1) is a tor-independent Mayer–Vietoris square and f is f -flat (e.g.,
flat), then the square above is a tor-independent Mayer–Vietoris square. This claim
follows from the same argument.

In the next Proposition, we show that general Mayer–Vietoris squares can smooth-
locally be dominated by much simpler ones.

Proposition 3.7. Fix a weak Mayer–Vietoris square as in (1.1). Then smooth-
locally on X, there is an étale neighborhood p : X ′′ → X ′ of Z ′ such that the com-
position f ◦ p : X ′′ → X is quasi-affine.

Proof. By Lemma 3.1, we may assume that X is an affine scheme. Observe that
the Deligne–Mumford locus of X ′ is an open substack containing Z ′. In particular,
there exist an affine scheme V and an étale morphism V → X ′ whose image contains
Z ′. Let ZV = V ×X′ Z ′; then the composition z : ZV → Z ′ ' Z = X r U is affine
and étale. After passing to an étale cover of X, we may assume that the morphism
ZV → Z ′ ' Z has a section s : Z → ZV . Since z is étale and separated, s is an open
and closed immersion; it follows that X ′′ = V r (ZV r s(Z)) is an open subscheme
of V . After replacing X ′′ with a quasi-compact open neighborhood of s(Z), we can
assume that X ′′ is quasi-compact. Thus, X ′′ → X ′ → X is a quasi-affine morphism
and X ′′ → X ′ is an isomorphism over Z ′. �

The following is the last lemma of the section.

Lemma 3.8. Fix a tor-independent Mayer–Vietoris square as in (1.1). If j is
quasi-compact, then QCohZ(X) ⊆ QCohf−fl(X).



MAYER–VIETORIS SQUARES IN ALGEBRAIC GEOMETRY 9

Proof. We may assume that X is affine and that i : Z → X is finitely presented. In
this case if N ∈ QCohZ(X), then we may write N as the union of its quasi-coherent
subsheaves of finite type and these also belong to QCohZ(X). Thus, it is sufficient
to prove the result for such sheaves. By Lemma 2.5(1), there is an n � 0 such

that N → i
[n]
∗ (i[n])∗N is an isomorphism. The result now follows from Lemma

2.4(1). �

Flat Mayer–Vietoris squares and weak Mayer–Vietoris squares are stable under
arbitrary base change but tor-independent Mayer–Vietoris squares are not. We now
give six examples of squares as in (1.1):

• Two examples of weak Mayer–Vietoris squares that are not tor-independent
Mayer–Vietoris squares. (Example 3.9)

• Two examples of tor-independent Mayer–Vietoris squares where f is a non-
flat closed immersion. (Examples 3.10–3.11)

• A tor-independent Mayer–Vietoris square that is not universally a tor-
independent Mayer–Vietoris square. (Example 3.12)

• A flat Mayer–Vietoris square, with j not quasi-compact, that is not a
pushout in the category of affine schemes. (Example 3.13)

As we will see later, tor-independent Mayer–Vietoris squares satisfy gluing of quasi-
coherent sheaves. In particular, Γ(X,OX) = Γ(X ′,OX′)×Γ(U ′,OU′ )

Γ(U,OU ), which
does not always hold for weak Mayer–Vietoris squares.

Example 3.9. Let A = k[x], B = A[z1, z2, . . . ]/(xz1, {zk − xzk+1}k≥1) and C =
B/(z1). Then A/(xn) = B/(xn) = C/(xn) = k[x]/(xn) and Ax = Bx = Cx =
k[x]x. Let X = SpecA, Z = SpecA/(x), U = X r Z, X ′ = SpecB, U ′ = X ′ r Z
and X ′′ = SpecC. Then the squares

U ′ //

��

X ′

��

U ′′

��

// X ′′

��
U // X

�

U ′ // X ′

�

are weak Mayer–Vietoris squares but not tor-independent Mayer–Vietoris squares.
Indeed A→ B ×Bx Ax = B and B → C ×Cx Bx = C are not isomorphisms.

Note that Z ↪→ X is a Cartier divisor but Z ↪→ X ′ is not a Cartier divisor.

Example 3.10. A diagonal Mayer–Vietoris square (Example 3.6) is typically not
flat, e.g., let A be a noetherian ring, I ⊆ A an ideal and consider the I-adic

completion ÂI . Let f : X ′ = Spec ÂI → X = SpecA and j : U = X r V (I) → X.
This gives rise to a flat Mayer–Vietoris square as in (1.1) and the diagonal Mayer–
Vietoris square is tor-independent. However, the closed immersion ∆f is usually
not flat except in cases such as when A is already I-adically complete. For example,
∆f is not flat when A is an integral domain, finitely generated over a field k, and
I 6= 0, I 6= A.

Example 3.11. Let V be a valuation ring with valuation ν : K(V )× → Γ and let
x ∈ V be non-zero. Then Vx is also a valuation ring and Vx = VP where P ⊆ V is the
maximal prime ideal properly contained in the prime ideal Q =

√
(x). Explicitly:

P = {a ∈ V : ∀n ∈ N : ν(a) > nν(x)}
Q = {a ∈ V : ∃n ∈ N : nν(a) ≥ ν(x)}.

Let X = Spec(V ), U = Spec(VP ), Z = Spec(V/xV ) and X ′ = Spec(V/P ). The
resulting square as in (1.1) is tor-independent. Indeed, it is a weak Mayer–Vietoris

square since P ⊆ (xn) for all n. It remains to verify that TorAi (V/xV, V/P ) = 0 for
all i > 0. But x /∈ P so x is V/P -regular, hence the Tors vanish.
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Example 3.12. Consider the valuation ν : k(x, y)× → Z2 with ν(x) = (0, 1) and
ν(y) = (1, 0) where Z2 is lexicographically ordered. The corresponding valuation
ring V has three prime ideals: the maximal ideal Q = (x), the prime ideal P =
(y, y/x, y/x2, . . . ) and the zero ideal. Then X ′ = SpecV/P → X = SpecV , U =
SpecVP = SpecVx is a tor-independent Mayer–Vietoris square as in the previous
example.

Let A = V/yV and let zn = y/xn denote the image of y/xn in A. Then A =
k[x, z1, ...]/(xz1, zk − xzk+1)(x,z1,z2,...) and B = A/PA = k[x](x). Let Y ′ = SpecB,
Y = SpecA and U = SpecAx. As in Example 3.9, A/(xn) = k[x]/(xn) = B/(xn)
but A→ B ×Bx Ax = B is not an isomorphism.

Example 3.13. Let X = SpecA be the spectrum of an absolutely flat ring such
that there exists a non-discrete point x ∈ |X|. Let m ⊆ A be the corresponding
maximal ideal. For a concrete example, let P be the set of primes of Z, let A =∏
p∈P Fp and let m be a maximal ideal containing the ideal ⊕p∈PFp. Let X ′ =

SpecA/m and let f : X ′ → X be the induced closed immersion. Let j : U =
X r {x} → X be the open immersion of the complement. Since A is an absolutely
flat ring, f is also flat. Let U ′ = X ′ ×X U = ∅; then the resulting square is a flat
Mayer–Vietoris square but j is not quasi-compact.

Note that the natural map |X ′| q |U | = |X ′| q|U ′| |U | → |X| is not a homeo-
morphism since |X ′| ⊆ |X| is not open. In particular, the functor ΦEt is not an
equivalence, cf. Corollary 6.6.

Let B = Γ(U,OU ). If the square was a pushout in the category of affine schemes,
then corresponding to the maps X ′ → X ′ and U → SpecB, there would be a
unique map g : X → SpecB qX ′ = Spec(B ×A/m). Then g−1(X ′) = X ′ which is
a contradiction since X ′ ⊆ X is not open.

This example also shows that

Γ(X,OX)→ Γ(U,OU )× Γ(X ′,OX′)

is not an isomorphism. In particular, the functor ΦQCoh is not even fully faithful.

4. Gluing of modules in Mayer–Vietoris squares

In this section, we show that quasi-coherent sheaves of modules, and related
objects such as quasi-coherent sheaves of algebras, can be glued in tor-independent
Mayer–Vietoris squares. This generalizes previous results of Ferrand–Raynaud [FR70,
App.] and Moret-Bailly [MB96]. We will prove this using some ideas from the the-
ory developed in [HR17, §5] for triangulated categories that are perfectly suited
to simultaneously deal with the non-flatness of f and the non-affineness of j. For
quasi-compact and quasi-separated algebraic spaces and in the context of stable
∞-categories, this was recently accomplished (independently) by Bhatt [Bha16,
Prop. 5.6]. Since we work with morphisms of algebraic stacks that may not have
finite cohomological dimension, we do not expect gluing results to hold in this gen-
erality in the unbounded derived category. Before we get to gluing, we characterize
the tor-independent squares in terms of derived categories.

Notation 4.1. Let i : Z ↪→ X be a closed immersion of algebraic stacks with
complement j : U → X. Define

Dqc,Z(X) = {M ∈ Dqc(X) : Lj∗qcM ' 0}.
Recall that f : X ′ → X is concentrated if f is quasi-compact, quasi-separated

and has universal finite cohomological dimension [HR17, Def. 2.4].

Proposition 4.2. Fix a cartesian diagram as in (1.1) with f concentrated, j quasi-
compact and X quasi-compact and quasi-separated. Consider the following condi-
tions:
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(1) the square is a tor-independent Mayer–Vietoris square;
(2) Rf∗ and Lf∗qc induce t-exact equivalences Db

qc,Z(X) ' Db
qc,Z′(X

′);

(3) Rf∗ and Lf∗qc induce t-exact equivalences Dqc,Z(X) ' Dqc,Z′(X
′); and

(4) Rf∗ and Lf∗qc induce equivalences Dqc,Z(X) ' Dqc,Z′(X
′).

Then (1) =⇒ (2) ⇐⇒ (3) =⇒ (4). Moreover, if fZ is affine, then all conditions
are equivalent; and if fZ is representable and Z has quasi-affine diagonal, then
(2) =⇒ (1).

In the application of Proposition 4.2 to the main result of this section (Theorem
4.4), we will only need (1) =⇒ (4) when X is an affine scheme and X ′ is a quasi-
affine scheme. We have included the general situation for independent interest.
Note that condition (4) is the definition of a Mayer–Vietoris Dqc-square [HR17,
Def. 5.5] and Proposition 4.2(1)⇒(4) gives another proof of [HR17, Ex. 5.6].

Remark 4.3. Taking f : Spec k → BG as in [HR15, Rem. 1.6] and U = ∅ provides
an example where (2) is satisfied, but (1) is not satisfied (f is representable but not
affine and its target does not have affine stabilizers).

Proof of Proposition 4.2. Trivially, (3) implies (2) and (4). SinceX is quasi-compact
and quasi-separated, we may assume that there is a finitely presented complement
i : Z ↪→ X of U [Ryd16, Prop. 8.2]. If (2) is satisfied, then Lf∗qci∗OZ = f∗i∗OZ and
the adjunction maps i∗OZ → f∗f

∗i∗OZ and f∗f∗i
′
∗OZ′ → i′∗OZ′ are isomorphisms.

If fZ is affine, then (1) holds (Lemma 3.2(2)). Otherwise, if Z has quasi-affine di-
agonal, then we start by noting that the t-exactness of Rf∗ also shows that R(fZ)∗
is t-exact. By [HR17, Lem. 2.2(vi)], it follows that if Z̃ → Z is a smooth mor-

phism, where Z̃ is an affine scheme, then the pullback fZ̃ of fZ to Z̃ is such that
R(fZ̃)∗ is t-exact. Since fZ̃ is representable, we conclude that fZ̃ is affine from
Serre’s Criterion [Ryd15, Thm. 8.7]. By smooth descent, fZ is affine, and we again
see that (1) holds. For (4) =⇒ (2) when fZ is affine, it is sufficient to prove that
Rmf∗N = 0 for all m > 0 and N ∈ QCohZ′(X

′). Since Rmf∗(−) is compati-
ble with filtered colimits, by writing N as a union of its finite type subsheaves
[Ryd16], we are reduced to proving the assertion when N is of finite type. In

this case, there is an n > 0 such that N ' i
′[n]
∗ (i′[n])∗N (Lemma 2.5(1)). Then

Rmf∗N ' Rmf∗i
′[n]
∗ (i′[n])∗N ' Rm(fZ[n])∗(i

′[n])∗N = 0 for all m > 0 as fZ , and so
fZ[n] , is affine.

We will finish the proof by showing that (1) =⇒ (2) =⇒ (3). For every M ∈
Dqc,Z(X) and N ∈ Dqc,Z′(X

′) we have adjunction maps

ηM : M → Rf∗Lf
∗
qcM and εN : Lf∗qcRf∗N → N.

We will show that these are quasi-isomorphism.
For (1) =⇒ (2) it is enough—by standard truncation arguments—to prove:

• ηM [0] and εN [0] are quasi-isomorphisms; and
• Lf∗(M [0])→ (f∗M)[0] and (f∗N)[0]→ Rf∗(N [0]) are quasi-isomorphisms,

where M is a quasi-coherent OX -module such that j∗M ∼= 0 and N is a quasi-
coherent OX′ such that j′∗N ∼= 0. If M and N are of finite type, then there exists

an integer n � 0 such that M → i
[n]
∗ (i[n])∗M and N → i

′[n]
∗ (i′[n])∗N are isomor-

phisms (Lemma 2.5(1)). Now Lemma 2.4 informs us that fZ[n] : Z ′[n] → Z [n] is an
isomorphism, i[n] and f are tor-independent, and M is f -flat. This immediately
proves the claims when M and N are of finite type. But every quasi-coherent sheaf
on X or X ′ is a directed limit of its quasi-coherent subsheaves of finite type [Ryd16],
so we have the claim in general.

To see that (2) =⇒ (3) it is enough to prove that Lf∗qc is left t-exact on Dqc,Z(X)
and that Rf∗ is right t-exact on Dqc,Z′(X

′). For the first claim, let M be a complex
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in D≥0
qc,Z(X). We may write M as a homotopy colimit of its truncations τ≤nM .

Since Lf∗qc commutes with coproducts and is t-exact on Db
qc,Z(X), it follows that

Lf∗qcM ∈ D≥0
qc,Z′(X

′) so Lf∗qc is t-exact. Also, if N is a complex in D≤0
qc,Z′(X

′), then
since f is concentrated and X is quasi-compact and quasi-separated, there exists
an integer n such that τ>0Rf∗N → τ>0Rf∗(τ

≥−nN) ' 0 is a quasi-isomorphism.
Hence, Rf∗ is t-exact. �

The following theorem generalizes [MB96, Thm. 3.1] (f affine) and [FR70, App.]
(f affine and flat) and is Theorem D(1).

Theorem 4.4. Fix a tor-independent Mayer–Vietoris square as in (1.1) with j
quasi-compact. The functors

ΦMod : Mod(X) � Mod(X ′)×Mod(U ′) Mod(U) : Ψ

where

ΦMod(M) = (f∗M, j∗M, δ) and Ψ(M ′,MU , α) = f∗M
′ ×α j∗MU

and δ is the canonical isomorphism j′∗f∗M ∼= f∗U j
∗M , are adjoint. Also, ΦMod

preserves tensor products and the restriction of ΦMod to QCohf−fl(X) induces an
equivalence of categories

(4.1) ΦQCoh,f−fl : QCohf−fl(X)→ QCoh(X ′)×QCoh(U ′) QCohfU−fl(U)

that preserves short exact sequences. Moreover,

(1) f∗ : QCohZ(X)→ QCohZ′(X
′) is an equivalence;

(2) ΦQCoh preserves and reflects
(a) zero objects,
(b) surjective homomorphisms and
(c) modules of finite type; and

(3) ΦQCoh,f−fl preserves and reflects
(a) modules of finite presentation and
(b) flat modules.

Proof. That ΦMod and Ψ are adjoints is clear. Hence, to prove that (4.1) is an
equivalence, it is enough to show that the unit M → Ψ(ΦMod(M)) and the counit
ΦMod(Ψ(M ′,MU , δ)) → (M ′,MU , δ) of the adjunction are isomorphisms when re-
stricted to the relevant subcategories. This is smooth local on X, so we may assume
that X is an affine scheme.

Until further notice, we will assume that X ′ is a quasi-compact and quasi-
separated algebraic space (even quasi-affine scheme is sufficient). Now the functor

Lf∗ : Dqc,Z(X)→ Dqc,Z′(X
′)

is a t-exact equivalence of categories (Proposition 4.2). Thus, we have a Mayer–
Vietoris Dqc-square in the sense of [HR17, Def. 5.5], which provides some natural
distinguished triangles [HR17, Lem. 5.9] that we now describe.

(i) For every M ∈ Dqc(X), there is a distinguished triangle:

M // Rj∗Lj∗M ⊕ Rf∗Lf
∗M // Rf∗Lf∗Rj∗Lj∗M // M [1].

(ii) Conversely, givenMU ∈ Dqc(U), M ′ ∈ Dqc(X ′) and an isomorphism δ : Lj′∗M ′ →
Lf∗UMU , we define M by the following distinguished triangle in Dqc(X):

M // Rj∗MU ⊕ Rf∗M
′
( ηfRj∗MU −α )

// Rf∗Lf∗Rj∗MU
// M [1],



MAYER–VIETORIS SQUARES IN ALGEBRAIC GEOMETRY 13

where α : Rf∗M
′ → Rf∗Lf

∗Rj∗MU is the composition:

Rf∗M
′ Rf∗η

j′

M′−−−−−→Rf∗Rj
′
∗Lj
′∗M ′

Rf∗Rj′∗δ−−−−−→Rf∗Rj
′
∗Lf

∗
UMU

∼= Rf∗Lf
∗Rj∗MU .

Then the induced maps Lj∗M →MU and Lf∗M →M ′ are isomorphisms.

Now let M ∈ QCohf−fl(X); then the distinguished triangle from (i) reduces to the
following distinguished triangle:

M // Rj∗j∗M ⊕ Rf∗f
∗M // Rf∗Lf∗Rj∗j∗M // M [1].

Observe that tor-independent base change [HR17, Cor. 4.13] implies that:

Rf∗Lf
∗Rj∗j

∗M ' Rf∗Rj
′
∗Lf

∗
ULj∗M ' Rk∗Lj

′∗Lf∗M ' Rk∗k
∗M

where k = j ◦ fU . Hence, taking the long exact cohomology sequence of the distin-
guished triangle above, we obtain the following exact sequence:

0→M → j∗j
∗M ⊕ f∗f∗M → k∗k

∗M → 0.

So the natural map M → Ψ(ΦMod(M)) is an isomorphism when M is quasi-coherent
and f -flat.

Conversely, given a triple (M ′,MU , δ), whereM ′ ∈ QCoh(X ′) andMU ∈ QCohfU−fl(U),
(ii) provides a distinguished triangle:

M // Rj∗MU ⊕ Rf∗M
′ // Rk∗M ′U // M [1],

such that the induced maps Lj∗M → MU and Lf∗M → M ′ are isomorphisms.
Since Φ(M ′,MU , δ) = H0(M), it is enough to show that M is concentrated in
degree 0. To see this, we have a distinguished triangle:

H0(M)[0] // M // τ≥1(M) // H0(M)[1].

If we apply the t-exact functor Lj∗ to this triangle, then the third term vanishes
so τ≥1(M) ∈ Dqc,Z(X). If we instead apply the right t-exact functor Lf∗ to this
triangle, we obtain the triangle:

Lf∗H0(M)[0] // M ′[0] // Lf∗τ≥1(M) // Lf∗H0(M)[1].

The first two terms are concentrated in degrees ≤ 0 and the third is concentrated
in degrees ≥ 1 since Dqc,Z(X)→ Dqc,Z′(X

′) is a t-exact equivalence. It follows that
τ≥1(M) ' 0.

Hence, we have proven the equivalence (4.1) when f : X ′ → X is quasi-compact,
quasi-separated and representable. We now address the general case. By Proposi-
tion 3.7, smooth-locally on X there is an étale neighborhood X ′′ of Z ′ in X ′ such
that the induced composition w : X ′′ → X is quasi-affine. Let U ′′ = X ′′ ×X U . It
now follows from the case considered already, as well as [Ryd11, Ex. 1.2], that we
have equivalences:

QCohw−fl(X) ' QCoh(X ′′)×QCoh(U ′′) QCohwU−fl(U)

'
(
QCoh(X ′′)×QCoh(U ′′) QCoh(U ′)

)
×QCoh(U ′) QCohwU−fl(U)

' QCoh(X ′)×QCoh(U ′) QCohwU−fl(U).

Note that QCohf−fl(X) ⊆ QCohw−fl(X) is a full subcategory and that we have an
equivalence

QCohf−fl(X)→ QCohw−fl(X)×QCohwU−fl(U) QCohfU−fl(U).

It follows that ΦQCoh,f−fl is an equivalence and it preserves short exact sequences.
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Now for (1): if M ∈ QCohZ(X), then M is f -flat (Lemma 3.8). Hence,

M → Ψ(f∗M, 0, 0) = f∗f
∗M

is an isomorphism. Also if M ′ ∈ QCohZ′(X
′), then

(f∗f∗M
′, 0, 0) = ΦMod(f∗M

′)→ (M ′, 0, 0)

is an isomorphism and the claim follows.
For (2a): the preservation is obvious. For the reflection: if M ∈ QCoh(X) and

j∗M ∼= 0, then M ∈ QCohZ(X). But if f∗M ∼= 0 too, then M ∼= 0 by (1).
For (2b): the preservation is because ΦMod admits a right adjoint Ψ and so is

right exact. For the reflection: if u : M → N is a morphism in QCoh(X) and j∗u
and f∗u are surjective, then j∗ coker(u) = 0 and f∗ coker(u) = coker(f∗u) = 0. It
follows from (2a) that coker(u) = 0 and u is surjective.

For (2c): the preservation is clear. For the reflection: we may assume that X
is affine. Write M ∈ QCoh(X) as a filtered union of quasi-coherent subsheaves Mλ

of finite type. For sufficiently large λ we see that ΦMod(Mλ)→ Φ(M) is surjective.
By (2b), we see that Mλ = M and so M is of finite type.

For (3a): the preservation is clear. For the reflection: Let M be an f -flat quasi-
coherent OX -module such that Φ(M) is of finite presentation. By (2c) we know
that M is of finite type. Since we are free to assume that X is affine, there is an
exact sequence 0→ K → O⊕nX →M → 0. But M is f -flat, so the sequence remains
exact after applying f∗. Since Φ(K) is of finite type, so is K and hence M is of
finite presentation.

For (3b): the preservation is clear. For the reflection: as before, we may as-
sume that X is affine and f is quasi-affine. Let M ∈ QCohf−fl(X) be such
that ΦQCoh,f−fl(M) is flat. Let N ∈ QCoh(X). It is sufficient to prove that
τ<0(N ⊗L

OX
M) ' 0. We begin with the following distinguished triangle:

C // N // Rj∗j∗N // C[1].

Observe that the derived projection formula [HR17, Cor. 4.12] implies that

(Rj∗j
∗N)⊗L

OX
M ' Rj∗((j

∗N)⊗L
OU

j∗M).

But j∗M is flat and so we conclude immediately that τ<0((Rj∗j
∗N)⊗L

OX
M) ' 0. It

remains to prove that τ<0(C⊗L
OX

M) ' 0. To this end, we first note that τ<0C ' 0
and j∗C ' 0. Moreover,

Lf∗(C ⊗L
OX

M) ' (Lf∗C)⊗L
OX′

Lf∗M ' (Lf∗C)⊗L
OX′

f∗M.

By assumption, f∗M is flat and so for all integers k there are isomorphisms:

Hk
(
(Lf∗C)⊗L

OX′
f∗M

) ∼= Hk(Lf∗C)⊗OX′ f
∗M.

But C ∈ Dqc,Z(X), so τ<0C ' 0 implies τ<0(Lf∗C) ' 0 (Proposition 4.2). Putting
this all together, we see that τ<0(Lf∗(C ⊗L

OX
M)) ' 0. But j∗(C ⊗L

OX
M) ' 0,

which implies that τ<0(C ⊗L
OX

M) ' 0 (Proposition 4.2 again). �

Note that 4.4(3b) gives a vast generalization of [MB96, Prop. 4.1(iii)], where
only the descent of étaleness is proved.

Remark 4.5. Assume that we are in the situation of Theorem 4.4. If f is con-
centrated, then the Mayer–Vietoris triangle shows that the functor Dqc(X) →
Dqc(X ′) ×Dqc(U ′) Dqc(U) is essentially surjective. It is, however, not fully faith-
ful. The reason is a well-known fault of the derived category: whereas cones are
unique up to isomorphism, morphisms between cones are not unique. One way
to fix this problem is to work with ∞-categories. Then one obtains the expected
equivalence, cf. [Bha16, Prop. 5.6].
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We now have a number of corollaries.

Corollary 4.6. Assume that we are in the situation of Theorem 4.4. If M ∈ Mod(X)
and N ∈ QCohf−fl(X), then the natural map:

Hom(M,N)→ Hom(f∗M,f∗N)×Hom(j′∗f∗M,j′∗f∗N) Hom(j∗M, j∗N)

is bijective.

Proof. Follows from the unit N → Ψ(ΦMod(N)) being an isomorphism. �

Corollary 4.7. Assume that we are in the situation of Theorem 4.4. If f is flat,
then ΦQCoh is an equivalence of abelian categories and preserves and reflects flatness.

Corollary 4.8 ([MB96, Cor. 3.4.3]). Assume that we are in the situation of The-
orem 4.4. Then M ∈ QCoh(X) is f -flat if and only if j∗M is fU -flat.

Proof. The necessity is clear. For the sufficiency: if j∗M is fU -flat, then M̃ =
Ψ(f∗M, j∗M, δ) is an f -flat quasi-coherent sheaf and there is a natural map η : M →
M̃ . Now j∗η and f∗η are isomorphisms, so ker(η) is f -flat (Lemma 3.8) and η is
surjective (Theorem 4.4(2b)). So we have an exact sequence:

0→ ker(η)→M → M̃ → 0

and ker(η) and M̃ are f -flat. It follows that M is f -flat, which gives the sufficiency.
�

We now consider Theorem 4.4 in the context of algebras, or equivalently, affine
schemes.

Corollary 4.9. Assume that we are in the situation of Theorem 4.4. The natural
functor

ΦAff,f−fl : Afff−fl(X)→ Aff(X ′)×Aff(U ′) AfffU−fl(U),

is an equivalence of categories. Moreover, the functor ΦAff preserves and reflects

(1) closed immersions;
(2) finite morphisms;
(3) integral morphisms;
(4) morphisms of finite type;

and the functor ΦAff,f−fl preserves and reflects

(5) morphisms of finite presentation.

Proof. An OX -algebra structure on an OX -module M is given by homomorphisms
OX → M and M ⊗OX M → M satisfying various compatibility conditions. If
M is f -flat, then an algebra structure on ΦMod(M) descends to a unique algebra
structure on M by Corollary 4.6.

That ΦAff preserves all the properties follows by definition. To see that ΦAff

reflects the properties, we may work fppf-locally on X and assume that X is affine
and work with the categories of algebras. We let Φ = ΦMod for the remainder of
the proof.

(1)–(2) These statements follow from Theorem 4.4(2b)–(2c).
(3) Let A→ B be a homomorphism of OX -algebras. If Φ(A)→ Φ(B) is integral,

then j∗A → j∗B is integral. Thus, if B0 is the integral closure of A in B, then
j∗B0 = j∗B. Write B as the filtered union of finitely generated B0-subalgebras
Bλ ⊆ B. Since j∗B0 = j∗(Bλ) = j∗B, we have that B/Bλ is f -flat; it follows
that Φ(Bλ) ⊆ Φ(B) is a Φ(B0)-subalgebra of finite type. Thus Φ(Bλ) is a finite
Φ(B0)-algebra, so Bλ is a finite B0-algebra. It follows that B =

⋃
λBλ is integral

over A.
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(4) If A → B is a homomorphism of OX -algebras such that Φ(A) → Φ(B) is
of finite type, then write B as a filtered union of finitely generated A-subalgebras
Bλ. For sufficiently large λ, we have that Φ(Bλ)→ Φ(B) is surjective, hence so is
Bλ → B so A→ B is of finite type.

(5) If A → B is a homomorphism of OX -algebras such that Φ(A) → Φ(B) is
of finite presentation, then we have already seen that A → B is of finite type.
There is an exact sequence 0 → I → A[x1, x2, . . . , xn] → B → 0 and if B is
f -flat, then this sequence remains exact after applying f∗. If in addition A is f -
flat, then we conclude that I is a finitely generated ideal (use Lemma 3.1(2) and
Theorem 4.4(2c)), hence that A→ B is of finite presentation. �

Corollary 4.10. Assume that we are in the situation of Theorem 4.4. If f is flat,
then ΦAff and ΦQaff are equivalences of categories.

Proof. The equivalence of ΦAff follows immediately from Corollary 4.9. For Qaff,
we must work a little more. Some notation will be useful: if W → Y is quasi-
affine, then let W → Y denote its affine hull. Note that the formation of W → Y
commutes with flat base change on Y . Similarly, for a morphism α : W1 → W2

of quasi-affine schemes over Y we let α denote the induced morphism between the
affine hulls.

Now for the faithfulness: let α, β : W1 → W2 be morphisms in Qaff(X) such
that ΦQaff(α) = ΦQaff(β). By the result for Aff, we see that α = β and the claim
follows.

Next for the fullness: consider quasi-affine X-schemes W1 and W2 and a mor-
phism (α′, αU ) : ΦQaff(W1) → ΦQaff(W2). The result for Aff implies that there is a
morphism α : W 1 →W 2 such that ΦAff(α) = (α′, αU ). It is sufficient to prove that
W1 ⊆ α−1(W2). But this may be checked on points and X ′ qU → X is surjective.
The claim follows.

Finally, for the essential surjectivity. Now fix a triple (W ′,WU , θ) in the codomain
for ΦQaff . This leads to a triple (W ′,WU , θ) in the codomain of ΦAff that may be
glued to an affine X-scheme W . Since U ⊆ X is quasi-compact and f is flat and
an isomorphism over Z, it is easily verified that X ′ q U → X is universally sub-
mersive (flatness is actually not needed, see Theorem 6.6). In particular, by base
changing along W → X we may glue the quasi-compact open subsets W ′ ⊆W ′ and
WU ⊆WU to a quasi-compact open subset W ⊆W . This proves the claim. �

We conclude this section with the following generalization of [FR70, Cor. 4.3].

Corollary 4.11. Assume that we are in the situation of Theorem 4.4. Let η : OX →
j∗OU and η′ : OX′ → j′∗OU ′ denote the unit maps.

(1) η is injective if and only if η′ is injective.
(2) η is integrally closed if and only if η′ is integrally closed.
(3) If X denotes the integral closure of X in U , i.e., SpecX(A) where A is

the integral closure of OX with respect to η, then X
′

:= X ×X X ′ is the

integral closure of X ′ in U ′ and the square of U → X and X
′ → X is a

tor-independent Mayer–Vietoris square.

Proof. By Corollary 4.9(1), there is a bijection of partially ordered sets

Φ: Clf−fl(X)→ Cl(X ′)×Cl(U ′) ClfU−fl(U),

where Cl(X) denotes the set of closed substacks V ↪→ X and Clf−fl denotes the

subset of closed substacks such that OV is f -flat. If we let U and U ′ denote the
schematic closures of U and U ′ in X and X ′ respectively, then U is f -flat (Corollary
4.8) and U corresponds to a triple (U×XX ′, U ′, U) on the right hand side. But U is
minimal among the closed substacks of X that contains U and U ′ is minimal among
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the closed substacks of X ′ that contains U ′. It follows that Φ(U) = (U ′, U ′, U).
Thus, X = U if and only if X ′ = U ′. Equivalently, η is injective if and only if η′ is
injective.

Similarly, Corollary 4.9(3) induces an equivalence of categories of integral mor-
phisms

Φ: Intf−fl(X)→ Int(X ′)×Int(U ′) IntfU−fl(U).

If we let Int(X,U) denote the integral morphisms W → X such that W |U → U is
an isomorphism and U is schematically dense in W , then Int(X,U) is equivalent to
the bounded lattice of sub-OX -algebras of j∗OU that are integral over OX . These
extensions are automatically f -flat, since they are fU -flat after restricting to OU
(Corollary 4.8). We thus obtain a bijection of bounded lattices:

Φ: Int(X,U)→ Int(X ′, U ′).

Indeed, the only non-obvious detail is that U ′ is schematically dense in Φ(W ) =
W ×X X ′ and that U is schematically dense in Φ−1(W ′, U ′, U). This follows from
the previous part since the square

W ×X U ′ //

��

W ×X X ′

��
W ×X U // W

�

is a tor-independent Mayer–Vietoris square (Lemma 3.1(2)). Moreover, the minimal
elements of these lattices are U and U ′. and the maximal elements are X and X ′.
The result follows. �

5. Étale sheaves of sets on stacks

In this section we generalize some fundamental results on constructible sheaves
in SGA4 from schemes to algebraic stacks.

Let X be an algebraic stack. We let Et(X) denote the category of étale rep-
resentable morphisms E → X. We identify Et(X) with the category of cartesian
lisse-étale sheaves of sets. Under this identification finitely presented étale mor-
phisms correspond to constructible sheaves of sets.

If X is a quasi-compact and quasi-separated algebraic space or Deligne–Mumford
stack, then there is an étale presentation by an affine scheme. Using this presenta-
tion it is easily seen that every étale sheaf on X is a filtered colimit of constructible
sheaves. We will now extend this result to every quasi-compact and quasi-separated
algebraic stack.

Recall that if f : X → Y is flat of finite presentation with geometrically reduced
fibers, then there exists a factorization X → π0(X/Y ) → Y where the first map
has connected fibers and the second is representable and étale [Rom11, Thm. 2.5.2].
This construction commutes with arbitrary base change on Y and is functorial in
X. The following result is due to J. Wise.

Proposition 5.1 ([Wis16, Thm. 4.5]). Let f : X → Y be flat of finite presen-
tation with geometrically reduced fibers (e.g., f smooth, quasi-compact and quasi-
separated). If every étale sheaf on X is a filtered colimit of constructible sheaves
(e.g., X is a quasi-compact and quasi-separated algebraic space), then f∗ : Et(Y )→
Et(X) admits a left-adjoint f! : Et(X)→ Et(Y ) with the following properties:

(1) If (E → X) ∈ Et(X), then the unit induces an X-morphism E → f∗f!E.
This gives a factorization E → f!E → Y of the morphism E → X → Y
such that E → f!E has geometrically connected fibers.

(2) f! preserves constructible sheaves.
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(3) f! commutes with pull-back: g∗f! = f ′! g
′∗ for any morphism g : Y ′ → Y ,

where f ′ : X ′ := X ×Y Y ′ → Y ′ and g′ : X ′ → X.

Proof. For constructible sheaves, it is readily seen that f!(E → X) := (π0(E/Y )→
Y ) is a left adjoint of f∗ and it commutes with arbitrary base change. It remains to
extend the construction to non-constructible étale sheaves E → X. If E = lim−→Eλ
is a filtered colimit of constructible sheaves, then necessarily f!E = lim−→ f!Eλ. �

We may now generalize [SGA43, Exp. IX, Cor. 2.7.2, Prop. 2.14] and [SGA43,
Exp. XII, Prop. 6.5 (i)] to quasi-compact and quasi-separated algebraic stacks.

Proposition 5.2. Let X be a quasi-compact and quasi-separated algebraic stack.
Then every étale sheaf of sets is a filtered colimit of constructible sheaves.

Proof. The result is known for affine schemes (and quasi-compact and quasi-separated
schemes). Pick a smooth presentation p : U → X with U affine. Let F → X be an
étale sheaf. Choose an epimorphism

∐
i∈I G

′
i → p∗F where the G′i are constructible.

Let Gi = p!G
′
i which is a constructible sheaf. Then

∐
Gi = p!(

∐
iG
′
i) → F is an

epimorphism since
∐
iG
′
i → p∗p!(

∐
iG
′
i)→ p∗F is an epimorphism.

The remainder of the proof is standard, cf. [SGA43, Exp. IX, Cor. 2.7.2]. For
every finite subset J ⊆ I, the coproduct GJ =

∐
i∈J Gi is constructible. The fiber

product HJ := GJ×F GJ is not constructible but at least quasi-separated since it is
a subsheaf of the constructible sheaf GJ ×X GJ . Consider the set Λ of pairs (J,H ′)
where J ⊆ I is finite and H ′ ⊆ HJ is quasi-compact, and hence constructible. For
λ = (J,H ′) ∈ Λ, let Fλ = coker(H ′ // // GJ) which is a constructible sheaf. We
order Λ by (J1, H

′
1) ≤ (J2, H

′
2) if J1 ⊆ J2 and g(H ′1) ⊆ H ′2 where g : HJ1 → HJ2 .

Then F = lim−→λ∈Λ
Fλ is a filtered colimit of constructible sheaves. �

Proposition 5.3. Let X be a quasi-compact and quasi-separated algebraic stack.
Let F ∈ Et(X) be a constructible sheaf of sets. Then there exist finite morphisms
pi : X

′
i → X, i = 1, 2, . . . , n and finite sets A1, A2, . . . , An and a monomorphism

F ↪→
∏

(pi)∗AiX′i
.

Proof. There exists a stratification of X into locally closed constructible substacks
Yi such that F |Yi is locally constant [Ryd11, Prop. 4.4]. If ui : Yi → X denotes the
corresponding quasi-compact immersion, then F →

∏
(ui)∗(ui)

∗F is a monomor-
phism. After refining the stratification, we can assume that the cardinality of F |Yi
is constant. Let qi : Y

′
i → Yi be a finite étale surjective morphism such that q∗i u

∗
iF

is a constant sheaf with value Ai.
Let Xi be the closure of Yi and let pi : X

′
i → X be the integral closure of X with

respect to Y ′i → Yi → Xi → X. Then pi is integral and pi|Yi = qi. If vi : Y
′
i → X ′i

denotes the open immersion, then (vi)∗AiY ′i
= AiX′i

is constant. Thus,

F →
∏

(ui)∗(ui)
∗F ↪→

∏
(ui)∗(qi)∗(qi)

∗(ui)
∗F =

∏
(pi)∗AiX′i

is a monomorphism.
Finally, write X ′i → Xi as an inverse limit of finite morphisms [Ryd16]. By an

easy limit argument, we can replace pi by a finite morphism. �

For an algebraic stack X, we let OC(X) denote the boolean algebra of closed
and open substacks.

Proposition 5.4. Let h : Y → X be a morphism of algebraic stacks. If X is
quasi-compact and quasi-separated, then the following conditions are equivalent.

(1) For every sheaf of sets F ∈ Et(X), the canonical map

H0(X,F )→ H0(Y, h∗F )

is bijective.
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(2) Condition (1) for constructible sheaves.
(3) For every finite morphism f : X ′ → X, the canonical map

OC(X ′)→ OC(Y ×X X ′)

is bijective.

Proof. The equivalence between (1) and (2) follows by Proposition 5.2. That (1)
implies (3) follows by the following two observations: (a) if A is a two-point set, then
H0(X, f∗AX′) = OC(X ′), and (b) by finite base change h∗f∗AX′ = (fY )∗AY×XX′ .

To see that (3) implies (1), take a monomorphism F ↪→ G as in Proposition 5.3.
Then by (3), H0(X,G) → H0(Y, h∗G) is bijective. It follows that H0(X,F ) →
H0(Y, h∗F ) is injective. Finally, take H = GqF G. Then we have a diagram

H0(X,F ) //

��

H0(X,G) ////

��

H0(X,H)

��
H0(Y, h∗F ) // H0(Y, h∗G) //// H0(Y, h∗H)

with exact rows and injective vertical maps and bijective middle map. It follows
that the left map is bijective. �

We recall the following well-known definition.

Definition 5.5 (Henselian pairs). A pair of algebraic stacks (X,X0) is a henselian
pair if i : X0 ↪→ X is a closed immersion and for every finite morphism X ′ → X,
the natural map

OC(X ′)→ OC(X ′ ×X X0)

is bijective.

We have the following simple lemma.

Lemma 5.6. Let (X,X0) be a henselian pair. Let X ′ → X be an integral mor-
phism. If X is quasi-compact and quasi-separated, then (X ′, X ′×XX0) is a henselian
pair.

Proof. Since X ′ → X is a limit of finite morphisms [Ryd16], the result follows from
a simple approximation argument. �

Remark 5.7 (Proper base change). Let (X,X0) be a henselian pair, where X is
quasi-compact and quasi-separated. If g : X ′ → X is proper and representable,
then (X ′, X ′×XX0) is a henselian pair (see [HR14, Cor. B.4] and [Gab94, Cor. 1]).
This follows from the existence of the Stein factorization X ′ → SpecOX g∗OX′ → X
where the first map is proper with geometrically connected fibers and the second
map is integral [Stacks, 0A1C]. This is a baby case of the proper base change
theorem in étale cohomology.

6. Mayer–Vietoris squares in étale cohomology

We will now glue étale morphisms, or equivalently, étale sheaves of sets. It is thus
natural to introduce the following squares which are analogous to Mayer–Vietoris
Dqc-squares.

Definition 6.1. Fix a cartesian square as in (1.1). It is a Mayer–Vietoris Et-square
if the following conditions are satisfied:

(1) the natural transformation f∗j∗ → j′∗f
∗
U is an isomorphism for every carte-

sian sheaf of sets F ∈ Et(U); and
(2) f∗ : EtZ(X) → EtZ′(X

′) is an equivalence of categories, where EtZ(X) =
{F ∈ Et(X) : j∗F = 0} and similarly for EtZ′(X

′).

http://stacks.math.columbia.edu/tag/0A1C
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Note that EtZ(X) does not depend on the choice of Z and that i∗ : Et(Z) →
EtZ(X) is an equivalence.

For Mayer–Vietoris Et-squares, gluing is immediate from recollement.

Theorem 6.2. Consider a Mayer–Vietoris Et-square. Then the functor

ΦEt : Et(X)→ Et(X ′)×Et(U ′) Et(U)

is an equivalence of categories.

Proof. By recollement [SGA41, Exp. IV, Thm. 9.5.4],

Et(X) ∼= (Et(Z),Et(U), i∗j∗),

that is, the category Et(X) is equivalent to the category of triples EZ ∈ Et(Z),
EU ∈ Et(U), ψ : EZ → i∗j∗EU . Similarly,

Et(X ′) ∼= (Et(Z ′),Et(U ′), i′∗j′∗)

and

Et(X ′)×Et(U ′) Et(U) ∼= (Et(Z ′),Et(U), i′∗j′∗f
∗
U )

∼= (Et(Z),Et(U), (fZ)∗i
′∗j′∗f

∗
U )

where we have used that (fZ)∗ is an equivalence of categories. Since (fZ)∗i
′∗j′∗f

∗
U =

(fZ)∗i
′∗f∗j∗ = i∗j∗ the result follows. �

We will now proceed to show that weak Mayer–Vietoris squares are Mayer–
Vietoris Et-squares. We begin with the following result that generalizes [FR70,
Cor. 4.4].

Proposition 6.3. Fix a weak Mayer–Vietoris square as in (1.1). Assume that
(X,Z) and (X ′, Z ′) are henselian pairs. If X, X ′, U and U ′ are all quasi-compact
and quasi-separated, then the natural map

f∗U : OC(U)→ OC(U ′)

is bijective.

Proof. Since X and U are quasi-compact and quasi-separated, we may assume that
the complement i : Z ↪→ X is finitely presented [Ryd16, Prop. 8.2]. Thus, we may
replace the square with its blow-up so that it becomes a tor-independent Mayer–
Vietoris square (Lemma 3.4). Note that (X ′, Z ′) and (X,Z) remain henselian pairs
(Remark 5.7).

By Corollary 4.11, we may replace X and X ′ by X and X ′ and assume that X
and X ′ are integrally closed with respect to U and U ′ respectively. Since the open
and closed subsets of an algebraic stack W are in bijection with idempotents of
Γ(W,OW ), it follows that OC(X)→ OC(U) and OC(X ′)→ OC(U ′) are bijections.
The corollary thus follows from the commutativity of the following diagram:

OC(Z) OC(X)
∼=oo ∼= //

��

OC(U)

��
OC(Z) OC(X ′)

∼=oo ∼= // OC(U ′). �

We can now prove Gabber’s rigidity theorem. For affine henselian pairs, this is
proven in [ILO14, Exp. 20, Thm. 2.1.1]. See Remark 6.7 for some history of this
result.
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Theorem 6.4 (Rigidity theorem). Fix a weak Mayer–Vietoris square as in (1.1).
Assume that (X,Z) and (X ′, Z ′) are henselian pairs. If X, X ′, U and U ′ are all
quasi-compact and quasi-separated, then the natural map:

H0(U,F )→ H0(U ′, f∗UF )

is a bijection for all sheaves of sets F ∈ Et(U).

Proof. It is enough to prove that OC(V )→ OC(U ′×U V ) is bijective for every finite
morphism V → U (Proposition 5.4). By Zariski’s main theorem [Ryd16, Thm. 8.1],
we can extend the finite morphism V → U to a finite morphism V → X. Since weak
Mayer–Vietoris squares are stable under arbitrary base change (Lemma 3.1(1)), it
is enough to prove that OC(U)→ OC(U ′) is bijective, which is Proposition 6.3. �

Corollary 6.5. Fix a weak Mayer–Vietoris square as in (1.1). If j is quasi-
compact, then it is a Mayer–Vietoris Et-square.

Proof. We need to verify that the natural morphism f∗j∗ → j′∗f
∗
U is an iso-

morphism. This equality certainly holds over U ′ since the counits of the ad-
junctions (j∗, j∗) and (j′∗, j′∗) are isomorphisms and hence j′∗j′∗f

∗
U = f∗U and

j′∗f∗j∗ = f∗U j
∗j∗ = f∗U . It is thus enough to verify the equality over points of

Z. We can first assume that X is affine by working smooth-locally on X and then
replace X with the henselization at a point z ∈ Z. Then X ′ is Deligne–Mumford in
a neighborhood of Z and we can thus replace X ′ with the henselization at z ∈ Z;
in particular, X and X ′ are quasi-compact and quasi-separated. Then the equal-
ity f∗j∗ = j′∗f

∗
U becomes H0(U,F ) = H0(U ′, f∗UF ), which follows by the rigidity

theorem. �

We can now prove Theorem C.

Proof of Theorem C. Combine Corollary 6.5 with Theorem 6.2. �

Corollary 6.6. Fix a weak Mayer–Vietoris square as in (1.1). If j is quasi-
compact, then X ′ q U → X is universally submersive and |X| = |X ′| q|U ′| |U |
is a pushout of topological spaces.

Proof. Since weak Mayer–Vietoris squares are preserved under arbitrary base change
it is enough to prove the latter statement. Set-theoretically, |X| = |X ′| q|U ′| |U |
holds since fZ : Z ′ → Z is an isomorphism. It is thus enough to prove that |X| has
the correct topology. Now a morphism of stacks is an open immersion if and only
if it is an étale monomorphism. That an étale morphism is a monomorphism can
be checked pointwise; thus, we have a bijection

ΦOp : Op(X)→ Op(X ′)×Op(U ′) Op(U).

It follows that a subset W ⊆ |X| is open if and only if j−1(W ) and f−1(W ) are
open. �

Remark 6.7. The rigidity theorem holds more generally for cohomology as well.
Fix a weak Mayer–Vietoris square as in (1.1) and assume that (X,Z) and (X ′, Z ′)
are affine henselian pairs. If n = 0 (resp. n ≤ 1, resp. n an integer), then

Hn(U,F )→ Hn(U ′, F )

is a bijection for all sheaves of sets F ∈ Et(U) (resp. sheaves of ind-finite groups,
resp. sheaves of torsion abelian groups). When X is noetherian, this is Gabber–
Fujiwara’s rigidity theorem [Fuj95, Cor. 6.6.4]. For n = 0, 1, this was extended
to non-noetherian schemes by Gabber [Gab05, Thm. 7.1], cf. [ILO14, Exp. 20,
Thm. 2.1.1]. For n ≥ 2, the non-noetherian case is sketched by Gabber in [ILO14,
Exp. 20, §4.4, CTC]. Note that the general case reduces to the case where X ′ is the
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completion of X in Z. Indeed, such a completion is a weak Mayer–Vietoris square
and the completions of X in Z and X ′ in Z are equal by definition.

7. Gluing of algebraic spaces along Mayer–Vietoris squares

In this section, we prove the main theorems of the article. We begin with a slight
strengthening of Theorem E.

Proposition 7.1. Fix an algebraic stack S and a tor-independent Mayer–Vietoris
square as in (1.1) over S with j quasi-compact. Let W → S be an algebraic stack.
Then

ΦHomS(−,W ) : HomS(X,W )→ HomS(X ′,W )×HomS(U ′,W ) HomS(U,W )

is fully faithful. If either

(1) W → S is Deligne–Mumford;
(2) ∆W/S is quasi-finite and ∆∆W/S

is a quasi-compact immersion; or

(3) ∆W/S is locally quasi-finite and separated;

then ΦHomS(−,W ) is an equivalence of groupoids. In particular, the square is co-
cartesian in the category of Deligne–Mumford stacks.

Proof. The question is fppf-local on X, so we may assume that X is affine. We
may also replace S and W with X and W ×S X → X and assume that X = S.
Further, we may replace X ′ with a quasi-compact open neighborhood of Z. Then,
we may also assume that W is quasi-compact.

If W → X is arbitrary (resp. representable, resp. a monomorphism), then ∆W/X

is representable (resp. a monomorphism, resp. an isomorphism). Fully faithfulness
of ΦHomX(−,W ) follows if ΦHomX(−,W×W×XWX) is an equivalence for every mor-
phism X → W ×X W . By induction on the diagonal, we may thus assume that
ΦHomX(−,W ) is fully faithful and it is enough to prove that ΦHomX(−,W ) is essentially
surjective when (1), (2) or (3) holds.

If W is Deligne–Mumford, then there exists an étale presentation W ′ → W . If
W is as in (2) or (3), then by [Ryd11, Thm. 7.2] or [Ryd13, Prop. 6.11] there exist
an étale representable morphism W ′ → W and a finite faithfully flat morphism
V →W ′ such that V is affine.

Given maps U → W and X ′ → W that agree on U ′, we obtain, by pulling
back W ′ → W , an element of Et(X ′) ×Et(U ′) Et(U), hence a unique element of
(E → X) ∈ Et(X) by Corollary 6.5 and Theorem 6.2. Pulling-back the square
along E → X, we may replace X by E and assume that W = W ′ in all three cases.

In the latter two cases, we additionally pull-back V → W ′ = W to finite flat
morphisms over X ′, U ′ and U . These glue to a unique finite faithfully flat morphism
F → X (Corollary 4.9 and Theorem 4.4(3b)). We may thus replace X with F and
assume that V = W = W ′ are affine schemes.

Let AW = Γ(W,OW ) for any algebraic stack W . The map ΦHom(−,W ) then
becomes

Hom(AW , AX)→ Hom(AW , AX′)×Hom(AW ,AU′ )
Hom(AW , AU )

= Hom(AW , AX′ ×AU′ AU ).

This is an isomorphism sinceAX → AX′×AU′AU is an isomorphism by Corollary 4.6
applied to the structure sheaf OX . �

We can now prove Theorem E.

Proof of Theorem E. This is the last statement of Proposition 7.1. �

We can now also generalize Corollary 4.6 from quasi-coherent sheaves to algebraic
spaces.
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Corollary 7.2. Fix a tor-independent Mayer–Vietoris square as in (1.1) with j
quasi-compact. Let Y → X and Z → X be relatively Deligne–Mumford (e.g.,
representable). If Y → X is f -flat, then

HomX(Y, Z)→ HomX(Y ×X X ′, Z)×HomX(Y×XU ′,Z) HomX(Y ×X U,Z)

is bijective.

Proof. Since Y → X is f -flat, the pull-back of the square along Y → X is a tor-
independent Mayer–Vietoris square (Lemma 3.1(2)). The result thus follows from
Proposition 7.1. �

We have now proved Theorem D in its entirety.

Proof of Theorem D. Claim (1) is Theorem 4.4 and claim (2) is Corollary 7.2. �

Remark 7.3. The map in Corollary 7.2 need not be injective if the square is a
weak Mayer–Vietoris square. Indeed, Example 3.9 is an example of a weak Mayer–
Vietoris square such that Γ(X)→ Γ(X ′)×Γ(U ′) Γ(U) is not injective. If f, g ∈ Γ(X)

are two element that have equal images, then the corresponding maps f, g : X → A1

become equal after restricting to X ′ and U .

We can also now prove Theorem B.

Proof of Theorem B. That ΦQCoh is an equivalence is Corollary 4.7. That ΦAff and
ΦQaff are equivalences is Corollary 4.10. That ΦAlgSp is fully faithful is a special case
of Corollary 7.2. That ΦHom(−,W ) is fully faithful for every algebraic stack W is
Proposition 7.1. That ΦHom(−,W ) is an equivalence when W has quasi-affine diago-
nal follows from Corollary 4.10 and an identical argument to [MB96, Cor. 6.5.1(a)].

It remains to prove (4): ΦAlgSplfp
is an equivalence when X is locally the spec-

trum of a G-ring. For quasi-separated algebraic spaces the essential surjectivity of
ΦAlgSplfp,qs

follows as in [MB96, Thm. 5.2 (ii), Cor. 5.6 (iii), Thm. 5.7] but since
we are working in a slightly more general setting let us write out the details. For
brevity, we let Φ = ΦAlgSplfp

.
Since algebraic spaces satisfy descent for the fppf topology, we may use Propo-

sition 3.7 and the étale gluing result [Ryd11, Thm. A], and so assume that X is
affine, the spectrum of a G-ring, and X ′ is quasi-affine.

If P is a property of morphisms of algebraic spaces, then we say that a morphism
of triples is P if the three components are P . Since X ′qU → X is faithfully flat and
quasi-compact, a morphism f : W1 → W2 in AlgSplfp(X) is quasi-compact (resp.
quasi-separated, resp. étale, resp. open, resp. a monomorphism) if and only if Φ(f)
has the same property [EGA, IV.2.7.1, IV.17.7.3 (ii)].

We now prove essential surjectivity of Φ. Thus, consider a triple W ′ → X ′,
WU → U , WU ′ → U ′ of algebraic spaces, locally of finite presentation.

We will begin by showing that it is enough to prove essential surjectivity of
Φ for the subcategories of quasi-compact algebraic spaces (cf. [MB96, Thm. 5.7]).
Write W ′ and WU as filtered unions of quasi-compact open subspaces W ′λ and WU,µ

respectively. Since j′ : U ′ → X ′ is quasi-compact, for every λ, the open subspace
W ′λ ∩ WU ′ is quasi-compact. Hence, for sufficiently large µ = µ(λ), the inverse

image WU ′,µ := f−1
U (WU,µ) contains W ′λ ∩ WU ′ . We may thus form the triple

(W ′λ ∪WU ′,µ,WU,µ,WU ′,µ) of quasi-compact algebraic spaces. By assumption, this
triple is in the essential image of Φ and descends to an algebraic space Wλ,µ. We
then let W =

⋃
λ,µWλ,µ where the union runs over all λ and µ ≥ µ(λ).

We next assume that the triple is quasi-compact and quasi-separated. In this
case, we claim that we are free to replace X with any flat covering (Xi → X) such
that every Xi → X is a filtered limit of flat and finitely presented morphisms Xi,λ →
X. Indeed, assume that the result holds for the Xi, that is, there exists an algebraic
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space Wi → Xi of finite presentation such that Φ(Wi) ∼= (W ′,WU ′ ,WU ) ×X Xi.
Then, by standard limit arguments, there is for every i and every sufficiently
large λ = λ(i) an algebraic space Wi,λ → Xi,λ of finite presentation such that
ΦXi,λ(Wi,λ) ∼= (W ′,WU ′ ,WU )×X Xi,λ. Since Φ is fully faithful over Xi,λ ×X Xi,λ

and Xi,λ×X Xi,λ×X Xi,λ there is a canonical gluing datum for Wi,λ → Xi,λ along
Xi,λ → X which is flat and of finite presentation. So by fppf descent, Wi,λ → Xi,λ

descends to an algebraic space over the open image of Xi,λ → X. Since we can find
a finite number of such Xi,λ that cover X, the claim follows.

Since X is the spectrum of a G-ring, the completion map X̂x → X is a regular
morphism. Hence, by Popescu’s theorem [Pop85], it is a limit of smooth morphisms.

Since (X̂x → X)x∈X is a flat cover, we may replace X with X̂x for some x and
assume that X is the spectrum of a complete local ring. The completion of X ′

at z equals the completion of X at z; hence, X ′ → X has a section s : X → X ′.
By Lemma 3.5, this gives rise to a new tor-independent Mayer–Vietoris square.
Corollary 7.2 for this square implies that

AlgSps−fl(X ′)→ AlgSp(X)×AlgSp(U) AlgSp(U ′)

is fully faithful. Since fU is flat, the image of f∗U : AlgSp(U) → AlgSp(U ′) consists
of s|U ′ -flat objects. Together with Corollary 4.8 this gives

AlgSp(X) ↪→ AlgSp(X ′)×AlgSp(U ′) AlgSp(U)

= AlgSps−fl(X ′)×AlgSp(U ′) AlgSp(U)

↪→
(
AlgSp(X)×AlgSp(U) AlgSp(U ′)

)
×AlgSp(U ′) AlgSp(U) = AlgSp(X)

so Φ(s∗W ′) ∼= (W ′,WU ′ ,WU ). Thus, Φ is essentially surjective for finitely presented
algebraic spaces. In fact, by the initial reduction to the quasi-compact case, we have
proved that Φ is essentially surjective for triples of quasi-separated algebraic spaces.

Let us finally prove that Φ is also essentially surjective for algebraic spaces
that are not quasi-separated. It is enough to prove that it is essentially surjec-
tive for quasi-compact algebraic spaces. By the previous argument, it is enough

to prove that if X = lim←−λXλ is a limit of affine schemes, and (W
′
,WU ′ ,WU ) :=

(W ′,WU ′ ,WU )×XX is in the essential image of Φ, then so is (W ′,WU ′ ,WU )×XXλ

for sufficiently large λ.

Thus, let W → X be an algebraic space such that Φ(W ) = (W
′
,WU ′ ,WU ) and

pick an affine presentation V → W . Note that V → W → X is finitely presented.
This induces morphisms of triples

Φ(V ) = (V
′
, V U ′ , V U )→ (W

′
,WU ′ ,WU )→ (X

′
, U ′, U)

where the first map is surjective and étale and the composition is of finite pre-
sentation. For sufficiently large λ, we may thus descend this to a morphism of
triples

(V ′λ, VU ′,λ, VU,λ)→ (W ′λ,WU ′,λ,WU,λ)→ (X ′λ, U
′
λ, Uλ)

over Xλ where the first map is étale and the composition is of finite presentation.
Thus, there exists an algebraic space Vλ → Xλ, unique up to unique isomorphism,
such that Φ(Vλ) ∼= (V ′λ, VU ′,λ, VU,λ).

LetR′λ = V ′λ×W ′λV
′
λ and similarly over U ′λ and Uλ. Then the triple (R′λ, RU ′,λ, RU,λ)

is locally of finite presentation and quasi-separated over (X ′λ, U
′
λ, Uλ) and hence iso-

morphic to Φ(Rλ) for an essentially unique Rλ → Xλ. By fully faithfulness, we
obtain an étale equivalence relation Rλ

//// Vλ and we let Wλ be its quotient alge-
braic space. By fully faithfulness, Φ(Wλ) is isomorphic to (W ′λ,WU ′,λ,WU,λ) and
the theorem follows. �

Finally, we prove Theorem A.
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Proof of Theorem A. We must show that for every algebraic stack W , the functor

ΦHom(−,W ) : Hom(X,W )→ Hom(X ′,W )×Hom(U ′,W ) Hom(U,W )

is an equivalence of groupoids. Using Proposition 3.7 and the étale gluing result
[Ryd11, Thm. A], we may assume that X is affine and X ′ is quasi-affine. In par-
ticular, we are free to assume that W is quasi-compact. We have already seen that
ΦHom(−,W ) is fully faithful in Proposition 7.1. To see that it is essentially surjective,
pick a smooth presentation W0 → W where W0 is an affine scheme. Pulling back,
we obtain a triple in (X ′0, U

′
0, U0) ∈ AlgSplfp(X ′) ×AlgSplfp(U ′) AlgSplfp(U); hence, a

representable morphism X0 → X by Theorem B. Since X ′ q U ′ → X is faithfully
flat and quasi-compact, it follows that X0 → X is smooth. Also,

U ′0 //

��

X ′0

��
U0

// X0,

�

is a flat Mayer–Vietoris square. Since W0 is affine, we obtain a unique morphism
X0 → W0 compatible with X ′0 → W0 and U0 → W0 (Proposition 7.1). By the full
faithfulness of ΦHom(−,W ), the induced morphisms X0 ×X X0

// // X0 → W0 → W
coincide up to a unique 2-isomorphism, so there is a unique morphism X →W and
the result follows. �
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Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier.

Avec la collaboration de P. Deligne et B. Saint-Donat.
[Stacks] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.

[Wis16] J. Wise, Moduli of morphisms of logarithmic schemes, Algebra Number Theory 10

(2016), no. 4, 695–735.

School of Mathematics & Statistics, The University of Melbourne, Parkville, VIC,

3010, Australia

E-mail address: jack.hall@unimelb.edu.au

KTH Royal Institute of Technology, Department of Mathematics, SE-100 44 Stock-

holm, Sweden
E-mail address: dary@math.kth.se

http://stacks.math.columbia.edu

	1. Introduction
	2. Preliminaries
	3. Mayer–Vietoris squares
	4. Gluing of modules in Mayer–Vietoris squares
	5. Étale sheaves of sets on stacks
	6. Mayer–Vietoris squares in étale cohomology
	7. Gluing of algebraic spaces along Mayer–Vietoris squares
	References

